首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-methyl-D-aspartate (NMDA) receptor is a calcium-permeable ionotropic glutamate receptor and plays a role in many neurologic disorders such as brain ischemia through its involvement in excitotoxicity. We have performed differential display PCR to identify changes in gene expression that occur in the hippocampus of the mouse brain after intraperitoneal injection of NMDA and identified a gene, Tex261 as an inducible gene by NMDA stimulation in vivo. Tex261 mRNA was gradually induced in response to NMDA and reached about 4.5-fold at 24 h. When HEK 293 cells are transfected with NMDA receptors, the cells die in a manner that mimics excitotoxicity in neurons. HEK 293 cells transfected with the combination of Tex261 and the NMDA receptors NR1/NR2A produced the greater cell death compared with the cells transfected with the NMDA receptors alone. These findings suggest that Tex261 modulates the excitotoxic cell death induced by NMDA receptor activation.  相似文献   

2.
Glutamate receptor activated neuronal cell death has been implicated in the pathogenesis of motor neuron disease but the molecular mechanism responsible for neuronal dysfunction needs to be elucidated. In the present study, we examined the contribution of NMDA and non-NMDA sub-types of glutamate receptors in selective vulnerability of motor neurons. Glutamate receptor activated Ca2+ signaling, mitochondrial functions and neurotoxicity in motor neurons and other spinal neurons were studied in mixed spinal cord primary cultures. Exposure of cells to glutamate receptor agonists glutamate, NMDA and AMPA elevated the intracellular Ca2+, mitochondrial Ca2+ and caused mitochondrial depolarization and cytotoxicity in both motor neurons and other spinal neurons but a striking difference was observed in the magnitude and temporal patterns of the [Ca2+]i responses between the two neuronal cell types. The motor neurons elicited higher Ca2+ load than the other spinal neurons and the [Ca2+]i levels were elevated for a longer duration in motor neurons. AMPA receptor stimulation was more effective than NMDA. Both the NMDA and non-NMDA receptor antagonists APV and NBQX inhibited the Ca2+ entry and decreased the cell death significantly; however, NBQX was more potent than APV. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors contribute to glutamate-mediated motor neuron damage but AMPA receptors play the major role. AMPA receptor-mediated excessive Ca2+ load and differential handling/regulation of Ca2+ buffering by mitochondria in motor neurons could be central in their selective vulnerability to excitotoxicity.  相似文献   

3.
One of the most vulnerable areas to ischemia or hypoglycemia is CA1 hippocampal region due to pyramidal neurons death. Glutamate receptors are involved together with protein-kinase C and nitric oxide synthase. Long-term potentiation (LTP) is generated in anoxic or hypoglycemic conditions via activation of NMDA while inhibition of these receptors atenuates this response. Protein-kinase C and nitric oxide synthase are involved in anoxic LTP mechanism. Postischemic neurons are hyperexcitable in CA3 area while CA1 pyramidal neurons degenerate and dissapear. Changes of glutamate receptors triggered by ischemia and hypoglycemia are discussed in this review.  相似文献   

4.
5.
Excitotoxicity is one of the most extensively studied processes of neuronal cell death, and plays an important role in many central nervous system (CNS) diseases, including CNS ischemia, trauma, and neurodegenerative disorders. First described by Olney, excitotoxicity was later characterized as an excessive synaptic release of glutamate, which in turn activates postsynaptic glutamate receptors. While almost every glutamate receptor subtype has been implicated in mediating excitotoxic cell death, it is generally accepted that the N-methyl-D-aspartate (NMDA) subtypes play a major role, mainly owing to their high calcium (Ca2+) permeability. However, other glutamate receptor subtypes such as 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate (AMPA) or kainate receptors have also been attributed a critical role in mediating excitotoxic neuronal cell death. Although the molecular basis of glutamate toxicity is uncertain, there is general agreement that it is in large part Ca2+-dependent. The present review is aimed at summarizing the molecular mechanisms of NMDA receptor and AMPA/kainate receptor-mediated excitotoxic neuronal cell death.  相似文献   

6.
Brain ischemia occurs when the blood supply to the brain is interrupted, leading to oxygen and glucose deprivation (OGD). This triggers a cascade of events causing a synaptic accumulation of glutamate. Excessive activation of glutamate receptors results in excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts. The mechanisms that underlie this difference are unclear. Cultured hippocampal neurons respond to OGD with a rapid internalization of AMPA receptor (AMPAR) subunit GluA2, resulting in a switch from GluA2-containing Ca2+-impermeable receptors to GluA2-lacking Ca2+-permeable subtypes (CP-AMPARs). GluA2 internalization is a critical component of OGD-induced cell death in hippocampal neurons. It is unknown how AMPAR trafficking is affected in cortical neurons following OGD. Here, we show that cultured cortical neurons are resistant to an OGD insult that causes cell death in hippocampal neurons. GluA1 is inserted at the plasma membrane in both cortical and hippocampal neurons in response to OGD. In contrast, OGD causes a rapid endocytosis of GluA2 in hippocampal neurons, which is absent in cortical neurons. These data demonstrate that populations of neurons with different vulnerabilities to OGD recruit distinct cell biological mechanisms in response to insult, and that a crucial aspect of the mechanism leading to OGD-induced cell death is absent in cortical neurons. This strongly suggests that the absence of OGD-induced GluA2 trafficking contributes to the relatively low vulnerability of cortical neurons to ischemia.  相似文献   

7.
Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured cerebellar granule neurons in vitro. We have investigated the effects of pretreatment with NMDA on kainate-induced neuronal cell death in mouse hippocampus in vivo. The systemic administration of kainate (30 mg/kg), but not NMDA (100 mg/kg), induced severe damage in pyramidal neurons of the hippocampal CA1 and CA3 subfields 3-7 days later, without affecting granule neurons in the dentate gyrus. An immunohistochemical study using an anti-single-stranded DNA antibody and TdT-mediated dUTP nick end labeling analysis both revealed that kainate, but not NMDA, induced DNA fragmentation in the CA1 and CA3 pyramidal neurons 1-3 days after administration. Kainate-induced neuronal loss was completely prevented by the systemic administration of NMDA (100 mg/kg) 1 h to 1 day previously. No pyramidal neuron was seen with fragmented DNA in the hippocampus of animals injected with kainate 1 day after NMDA treatment. The neuroprotection mediated by NMDA was prevented by the non-competitive NMDA receptor antagonist MK-801. Taken together these results indicate that in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation in murine hippocampus.  相似文献   

8.
Abstract: Polyamines positively modulate the activity of the N -methyl- d -aspartate (NMDA)-sensitive glutamate receptors. The concentration of polyamines in the brain increases in certain pathological conditions, such as ischemia and brain trauma, and these compounds have been postulated to play a role in excitotoxic neuronal death. In primary cultures of rat cerebellar granule neurons, exogenous application of the polyamines spermidine and spermine (but not putrescine) potentiated the delayed neurotoxicity elicited by NMDA receptor stimulation with glutamate. Furthermore, both toxic and nontoxic concentrations of glutamate stimulated the activity of ornithine decarboxylase (ODC)—the key regulatory enzyme in polyamine synthesis—and increased the concentration of ODC mRNA in cerebellar granule neurons but not in glial cells. Glutamate-induced ODC activation but not neurotoxicity was blocked by the ODC inhibitor difluoromethylornithine. Thus, high extracellular polyamine concentrations potentiate glutamate-triggered neuronal death, but the glutamate-induced increase in neuronal ODC activity may not play a determinant role in the cascade of intracellular events responsible for delayed excitotoxicity.  相似文献   

9.
The neural cell adhesion molecule (NCAM) and its associated glycan polysialic acid play important roles in the development of the nervous system and N-methyl-D-aspartate(NMDA)receptor-dependent synaptic plasticity in the adult. Here, we investigated the influence of polysialic acid on NMDA receptor activity. We found that glutamate-elicited NMDA receptor currents in cultured hippocampal neurons were reduced by approximately 30% with the application of polysialic acid or polysialylated NCAM but not by the sialic acid monomer, chondroitin sulfate, or non-polysialylated NCAM. Polysialic acid inhibited NMDA receptor currents elicited by 3 microm glutamate but not by 30 microm glutamate, suggesting that polysialic acid acts as a competitive antagonist, possibly at the glutamate binding site. The polysialic acid induced effects were mimicked and fully occluded by the NR2B subunit specific antagonist, ifenprodil. Recordings from single synaptosomal NMDA receptors reconstituted in lipid bilayers revealed that polysialic acid reduced open probability but not the conductance of NR2B-containing NMDA receptors in a polysialic acid and glutamate concentration-dependent manner. The activity of single NR2B-lacking synaptosomal NMDA receptors was not affected by polysialic acid. Application of polysialic acid to hippocampal cultures reduced excitotoxic cell death induced by low micromolar concentration of glutamate via activation of NR2B-containing NMDA receptors, whereas enzymatic removal of polysialic acid resulted in increased cell death that occluded glutamate-induced excitotoxicity. These observations indicate that the cell adhesion molecule-associated glycan polysialic acid is able to prevent excitotoxicity via inhibition of NR2B subunit-containing NMDA receptors.  相似文献   

10.
Glutamate release and neuronal damage in ischemia.   总被引:54,自引:0,他引:54  
Y Nishizawa 《Life sciences》2001,69(4):369-381
Neuronal injury caused by ischemia after occlusion of cerebral arteries is believed to be mediated by excessive activation of glutamate receptors. In the ischemic brain, extracellular glutamate is elevated rapidly after the onset of ischemia and declines following reperfusion. The mechanisms of the elevation of extracellular glutamate include enhanced efflux of glutamate and the reduction of glutamate uptake. The early efflux of glutamate occurring immediately after the onset of ischemia is mediated by a calcium-dependent process through activation of voltage-dependent calcium channels. The calcium-independent efflux at later stages is thought to be mediated primarily by glutamate transporters operating in the reverse mode owing to the imbalance of sodium ions across plasma membranes. Although high levels of glutamate in the extracellular space are well established to appear rapidly after the onset of ischemia, a direct linkage between the enhanced release of glutamate and the neuronal injury has not been fully established. In cultured neurons, ischemia induces efflux of glutamate into the extracellular space, but subsequent neuronal loss is not solely caused by the high glutamate concentration. In addition, cultured neurons can be rescued by NMDA antagonists added to the medium after exposure to glutamate receptor agonists. Two mechanisms can be proposed for neuroprotection by late NMDA receptor blockade, i.e., blocking of presynaptic release of glutamate after excessive activation of glutamate receptors, and blocking of postsynaptic sensitization of NMDA receptors.  相似文献   

11.
Glutamate receptors modulate multiple signaling pathways, several of which involve mitogen-activated protein (MAP) kinases, with subsequent physiological or pathological consequences. Here we report that stimulation of the N-methyl-D-aspartate (NMDA) receptor, using platelet-activating factor (PAF) as a messenger, activates MAP kinases, including c-Jun NH2-terminal kinase, p38, and extracellular signal-regulated kinase, in primary cultures of hippocampal neurons. Activation of the metabotropic glutamate receptor (mGluR) blocks this NMDA-signaling through PAF and MAP kinases, and the resultant cell death. Recombinant PAF-acetylhydrolase degrades PAF generated by NMDA-receptor activation; the hetrazepine BN50730 (an intracellular PAF receptor antagonist) also inhibits both NMDA-stimulated MAP kinases and neuronal cell death. The finding that the NMDA receptor-PAF-MAP kinase signaling pathway is attenuated by mGluR activation highlights the exquisite interplay between glutamate receptors in the decision making process between neuronal survival and death.  相似文献   

12.
Mechanisms of excitotoxicity in neurologic diseases.   总被引:22,自引:0,他引:22  
M F Beal 《FASEB journal》1992,6(15):3338-3344
Excitotoxicity refers to neuronal cell death caused by activation of excitatory amino acid receptors. A substantial body of evidence has implicated excitotoxicity as a mechanism of cell death in both acute and chronic neurologic diseases. A major recent advance has been the successful cloning and expression of the N-methyl-D-aspartate (NMDA), non-NMDA, and metabotropic glutamate receptors. The cellular mechanisms responsible for cell death after activation of these receptors are still being clarified. In acute neurologic diseases such as stroke and head trauma, excitotoxicity may be related to excessive glutamate release. In chronic neurodegenerative diseases, however, a slow excitotoxic process is more likely to occur as a consequence of either a receptor abnormality or an impairment of energy metabolism. Recent therapeutic studies have demonstrated the efficacy of non-NMDA receptor antagonists in experimental studies of global ischemia.  相似文献   

13.
In some animal models of ischemia, neuronal degeneration can be prevented by the selective antagonism of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype, suggesting that glutamate released during ischemia causes injury by activating NMDA receptors. The rat hippocampal slice preparation was used as an in vitro model to study the pharmacology of glutamate toxicity and investigate why NMDA receptors are critical in ischemic injury. Acute toxicity was assessed by quantifying the inhibition of protein synthesis, which we confirmed by autoradiography to be primarily neuronal. The effect of NMDA was prevented by the specific antagonists MK-801 and ketamine, as well as by the less selective antagonist kynurenic acid. The less selective antagonists kynurenic acid and 6,7-dinitroquinoxaline-2,3-dione antagonized the effects of quisqualate and NMDA. In contrast to previous observations with dissociated neurons in tissue culture, the toxicity of glutamate was unaffected by antagonists, regardless of the glutamate concentration, the duration of exposure, or the presence of magnesium. The high concentration of glutamate required to inhibit protein synthesis and the inability of receptor antagonists to block the effect of glutamate suggest that either glutamate acts through a non-receptor-mediated mechanism, or that the receptor-mediated nature of glutamate effects are masked in the slice preparation, perhaps by the glial uptake of glutamate. The altered physiology induced by ischemia must potentiate the neurotoxicity of glutamate, because we observed with a brain slice preparation that only high concentrations of glutamate caused neurotoxicity in the presence of oxygen and glucose and that these effects were not reversed by glutamate receptor antagonists.  相似文献   

14.
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and synaptic glutamate release are blocked, and are found to be mediated by glutamate released from astrocytes acting preferentially on extrasynaptic NMDA receptors. The slow currents can be triggered by stimuli that evoke Ca2+ oscillations in astrocytes, including photolysis of caged Ca2+ in single astrocytes. As revealed by paired recording and Ca2+ imaging, a striking feature of this NMDA receptor response is that it occurs synchronously in multiple CA1 neurons. Our results reveal a distinct mechanism for neuronal excitation and synchrony and highlight a functional link between astrocytic glutamate and extrasynaptic NMDA receptors.  相似文献   

15.
Abstract: Accumulation of intracellular Ca2+ is known to be critically important for the expression of NMDA receptor-mediated glutamate neurotoxicity. We have observed, however, that glutamate can also increase the neuronal intracellular Mg2+ concentration on activation of NMDA receptors. Here, we used conditions that elevate intracellular Mg2+ content independently of Ca2+ to investigate the potential role of Mg2+ in excitotoxicity in rat cortical neurons in vitro. In Ca2+-free solutions in which the Na+ was replaced by N -methyl- d -glucamine or Tris (but not choline), which also contained 9 m M Mg2+, exposure to 100 µ M glutamate or 200 µ M NMDA for 20 min produced delayed neuronal cell death. Neurotoxicity was correlated to the extracellular Mg2+ concentration and could be blocked by addition of NMDA receptor antagonists during, but not immediately following, agonist exposure. Finally, we observed that rat cortical neurons grown under different serum conditions develop an altered sensitivity to Mg2+-dependent NMDA receptor-mediated toxicity. Thus, the increase in intracellular Mg2+ concentration following NMDA receptor stimulation may be an underestimated component critical for the expression of certain forms of excitotoxic injury.  相似文献   

16.
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.  相似文献   

17.
Virus infection of neurons leads to different outcomes ranging from latent and noncytolytic infection to cell death. Viruses kill neurons directly by inducing either apoptosis or necrosis or indirectly as a result of the host immune response. Sindbis virus (SV) is an alphavirus that induces apoptotic cell death both in vitro and in vivo. However, apoptotic changes are not always evident in neurons induced to die by alphavirus infection. Time lapse imaging revealed that SV-infected primary cortical neurons exhibited both apoptotic and necrotic morphological features and that uninfected neurons in the cultures also died. Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors protected neurons from SV-induced death without affecting virus replication or SV-induced apoptotic cell death. These results provide evidence that SV infection activates neurotoxic pathways that result in aberrant NMDA receptor stimulation and damage to infected and uninfected neurons.  相似文献   

18.
Overactivation of glutamate receptors contributes to neuronal damage (excitotoxicity) in ischemic stroke but the detailed mechanisms are not fully elucidated. Brain ischemia is also characterized by an impairment of the activity of the proteasome, one of the major proteolytic systems in neurons. We found that excitotoxic stimulation with glutamate rapidly decreases ATP levels and the proteasome activity, and induces the disassembly of the 26S proteasome in cultured rat hippocampal neurons. Downregulation of the proteasome activity, leading to an accumulation of ubiquitinated proteins, was mediated by calcium entry through NMDA receptors and was only observed in the nuclear fraction. Furthermore, excitotoxicity-induced proteasome inhibition was partially sensitive to cathepsin-L inhibition and was specifically induced by activation of extrasynaptic NMDA receptors. Oxygen and glucose deprivation induced neuronal death and downregulated the activity of the proteasome by a mechanism dependent on the activation of NMDA receptors. Since deubiquitinating enzymes may regulate proteins half-life by counteracting ubiquitination, we also analyzed how their activity is regulated under excitotoxic conditions. Glutamate stimulation decreased the total deubiquitinase activity in hippocampal neurons, but was without effect on the activity of Uch-L1, showing that not all deubiquitinases are affected. These results indicate that excitotoxic stimulation with glutamate has multiple effects on the ubiquitin–proteasome system which may contribute to the demise process in brain ischemia and in other neurological disorders.  相似文献   

19.
Glutamate receptor activated neuronal cell death is attributed to a massive influx of Ca(2+) and subsequent formation of reactive oxygen species (ROS) but the relative contribution of NMDA and non-NMDA sub-types of glutamate receptors in excitotoxicity is not known. In the present study, we have examined the role of NMDA and non-NMDA receptors in glutamate-induced neuronal injury in cortical slices from young (20+/-2 day) and adult (80+/-5 day) rats. Treatment of slices with glutamate receptor agonists NMDA, AMPA and KA elicited the formation of reactive oxygen species (ROS) and neuronal cell death. In young slices, NMDA receptor stimulation caused a higher ROS formation and neurotoxicity, but KA was more effective in producing ROS and cell death in adult slices. AMPA exhibited an intermediate effect on ROS formation and toxicity in both the age groups. A significant protection in glutamate mediated ROS formation and neurotoxicity was observed in presence of NMDA or/and non-NMDA receptors antagonists APV and NBQX, respectively. This further confirms the involvement of both NMDA and non-NMDA receptors in glutamate mediated neurotoxicity. In adult slices, we did not find positive correlation between ligand induced neurotoxicity and mitochondrial depolarization. Though, NMDA and KA stimulation produced differential effect on ROS formation and neurotoxicity in young and adult slices, the mitochondrial depolarization was higher and comparable on NMDA stimulation in both the age groups as compared to KA, suggesting that the mitochondrial depolarization may not be a good indicator for neurotoxicity. Our results demonstrate that both NMDA and non-NMDA sub-types of glutamate receptors are involved in glutamate mediated neurotoxicity but their relative contribution is highly dependent on the age of the animal.  相似文献   

20.
Abstract: Neurons grown in culture die when they are exposed to high concentrations (0.1–1 m M ) of the neurotransmitter l -glutamate. A similar phenomenon may occur in the mammalian brain during ischemia and other injuries that cause excessive glutamate release. Activation of N -methyl- d -aspartate (NMDA) receptors and the consequent Ca2+ influx are thought to play a critical role in the process of neuronal toxicity. Events subsequent to the Ca2+ influx are not well understood. We have discovered that nonneuronal kidney cells expressing NMDA receptors after DNA transfection undergo cell death unless they are protected by drugs that block the NMDA receptor ion channel. Furthermore, transfected cells expressing a mutated NMDA receptor that conducts less Ca2+ are less vulnerable to cell death. In addition, we find that even though several active forms of NMDA receptors can be synthesized in these cells after transfection with different cloned subunits, not all receptor types are equally toxic. These experiments suggest that Ca2+ influx through NMDA channels may be toxic to nonneuronal cells and that the NMDA receptor expression may be the major neuron-specific component of excitotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号