首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infection with respiratory syncytial virus (RSV) in neonatal mice leads to exacerbated disease if mice are reinfected with the same virus as adults. Both T cells and the host major histocompatibility complex genotype contribute to this phenomenon, but the part played by innate immunity has not been defined. Since macrophages and natural killer (NK) cells play key roles in regulating inflammation during RSV infection of adult mice, we studied the role of these cells in exacerbated inflammation following neonatal RSV sensitization/adult reinfection. Compared to mice undergoing primary infection as adults, neonatally sensitized mice showed enhanced airway fluid levels of interleukin-6 (IL-6), alpha interferon (IFN-α), CXCL1 (keratinocyte chemoattractant/KC), and tumor necrosis factor alpha (TNF-α) at 12 to 24 h after reinfection and IL-4, IL-5, IFN-γ, and CCL11 (eotaxin) at day 4 after reinfection. Weight loss during reinfection was accompanied by an initial influx of NK cells and granulocytes into the airways and lungs, followed by T cells. NK cell depletion during reinfection attenuated weight loss but did not alter T cell responses. Depletion of alveolar macrophages with inhaled clodronate liposomes reduced both NK and T cell numbers and attenuated weight loss. These findings indicate a hitherto unappreciated role for the innate immune response in governing the pathogenic recall responses to RSV infection.  相似文献   

2.
Respiratory syncytial virus (RSV) infection in early life is suspected to play a role in the development of post-bronchiolitis wheezing and asthma. Reinfection is common at all ages, but factors that determine the development of altered airway function after reinfection are not well understood. This study was conducted in a mouse model to define the role of age in determining the consequences on airway function after reinfection. Mice were infected shortly after birth or at weaning and were reinfected 5 wk later, followed by assessment of airway function, airway inflammation, and lung histopathology. Infection of mice at weaning elicited a protective airway response upon reinfection. In this age group, reinfection resulted in increased airway inflammation, but without development of airway hyperresponsiveness (AHR) or eosinophilia and decreased IL-13 levels. By contrast, neonatal infection failed to protect the airways and resulted in enhanced AHR after reinfection. This secondary response was associated with the development of airway eosinophilia, increased IL-13 levels, and mucus hyperproduction. Both CD4- and CD8-positive T cells were a source of IL-13 in the lung, and inhibition of IL-13 abolished AHR and mucus production in these mice. Inoculation of UV-inactivated virus failed to elicit these divergent responses to reinfection, emphasizing the requirement for active lung infection during initial exposure. Thus, neonatal RSV infection predisposes to the development of airway eosinophilia and enhanced AHR via an IL-13-dependent mechanism during reinfection, whereas infection at a later age protects against the development of these altered airway responses after reinfection.  相似文献   

3.
In an effort to develop a safe and effective vaccine against respiratory syncytial virus (RSV), we used Escherichia coli heat-labile toxin (LT), and LTK63 (an LT mutant devoid of ADP-ribosyltransferase activity) to elicit murine CD8(+) CTL responses to an intranasally codelivered CTL peptide from the second matrix protein (M2) of RSV. M2(82-90)-specific CD8(+) T cells were detected by IFN-gamma enzyme-linked immunospot and (51)Cr release assay in local and systemic lymph nodes, and their induction was dependent on the use of a mucosal adjuvant. CTL elicited by peptide immunization afforded protection against RSV challenge, but also enhanced weight loss. CTL-mediated viral clearance was not dependent on IFN-gamma since depletion using specific mAb during RSV challenge did not affect cellular recruitment or viral clearance. Depletion of IFN-gamma did, however, reduce the concentration of TNF detected in lung homogenates of challenged mice and largely prevented the weight loss associated with CTL-mediated viral clearance. Mice primed with the attachment glycoprotein (G) develop lung eosinophilia after intranasal RSV challenge. Mucosal peptide vaccination reduced pulmonary eosinophilia in mice subsequently immunized with G and challenged with RSV. These studies emphasize that protective and immunoregulatory CD8(+) CTL responses can be mucosally elicited using enterotoxin-based mucosal adjuvants but that resistance against viral infection may be accompanied by enhanced disease.  相似文献   

4.
Role of CCL5 (RANTES) in viral lung disease   总被引:2,自引:0,他引:2       下载免费PDF全文
CCL5/RANTES is a key proinflammatory chemokine produced by virus-infected epithelial cells and present in respiratory secretions of asthmatics. To examine the role of CCL5 in viral lung disease, we measured its production during primary respiratory syncytial virus (RSV) infection and during secondary infection after sensitizing vaccination that induces Th2-mediated eosinophilia. A first peak of CCL5 mRNA and protein production was seen at 18 to 24 h of RSV infection, before significant lymphocyte recruitment occurred. Treatment in vivo with Met-RANTES (a competitive chemokine receptor blocker) throughout primary infection decreased CD4+ and CD8+ cell recruitment and increased viral replication. In RSV-infected, sensitized mice with eosinophilic disease, CCL5 production was further augmented; Met-RANTES treatment again reduced inflammatory cell recruitment and local cytokine production. A second wave of CCL5 production occurred on day 7, attributable to newly recruited T cells. Paradoxically, mice treated with Met-RANTES during primary infection demonstrated increased cellular infiltration during reinfection. We therefore show that RSV induces CCL5 production in the lung and this causes the recruitment of RSV-specific cells, including those making additional CCL5. If this action is blocked with Met-RANTES, inflammation decreases and viral clearance is delayed. However, the exact effects of chemokine modulation depend critically on time of administration, a factor that may potentially complicate the use of chemokine blockers in inflammatory diseases.  相似文献   

5.
In mice, respiratory syncytial virus (RSV) infection enhances allergic airway sensitization, resulting in lung eosinophilia and in airway hyperresponsiveness (AHR). The mechanisms by which RSV contributes to development of asthma and its effects on allergic airway sensitization in mice are not known. We tested whether these consequences of RSV infection can be adoptively transferred by T cells and whether depletion of T cell subsets prevents the effects of RSV infection on subsequent airway sensitization. Mononuclear cells, T lymphocytes, or CD4 or CD8 T cells from peribronchial lymph nodes (PBLN) of RSV-infected mice were transferred into naive BALB/c mice which were then exposed to OVA via the airways. Additionally, RSV-infected mice were depleted of CD4 or CD8 T cells following acute RSV infection but prior to airway sensitization. Following sensitization, airway responsiveness to inhaled methacholine, numbers of lung eosinophils, and levels of IFN-gamma, IL-4, and IL-5 in PBLN cell cultures were monitored. Transfer of T cells from RSV-infected mice resulted in increased eosinophil influx into the lungs, increased IL-5 production, and development of AHR following airway sensitization to allergen. Transfer of CD8 but not CD4 T cells from the PBLN of RSV-infected mice also resulted in AHR following 10 days of OVA exposure. Further, depletion of CD8 T cells prevented these consequences of RSV infection while CD4 T cell depletion reduced them. We conclude that T cells, in particular CD8 T cells, are critical in mediating RSV-induced development of lung eosinophilia and AHR following allergic airway sensitization.  相似文献   

6.
The host immune response is believed to contribute to the severity of pulmonary disease induced by acute respiratory syncytial virus (RSV) infection. Because RSV-induced pulmonary disease is associated with immunopathology, we evaluated the role of IL-10 in modulating the RSV-specific immune response. We found that IL-10 protein levels in the lung were increased following acute RSV infection, with maximum production corresponding to the peak of the virus-specific T cell response. The majority of IL-10-producing cells in the lung during acute RSV infection were CD4(+) T cells. The IL-10-producing CD4(+) T cells included Foxp3(+) regulatory T cells, Foxp3(-) CD4(+) T cells that coproduce IFN-γ, and Foxp3(-) CD4(+) T cells that do not coproduce IFN-γ. RSV infection of IL-10-deficient mice resulted in more severe disease, as measured by increased weight loss and airway resistance, as compared with control mice. We also observed an increase in the magnitude of the RSV-induced CD8(+) and CD4(+) T cell response that correlated with increased disease severity in the absence of IL-10 or following IL-10R blockade. Interestingly, IL-10R blockade during acute RSV infection altered CD4(+) T cell subset distribution, resulting in a significant increase in IL-17A-producing CD4(+) T cells and a concomitant decrease in Foxp3(+) regulatory T cells. These results demonstrate that IL-10 plays a critical role in modulating the adaptive immune response to RSV by limiting T-cell-mediated pulmonary inflammation and injury.  相似文献   

7.
Respiratory syncytial virus (RSV) is an important cause of infant morbidity and mortality worldwide and is increasingly recognized to have a role in the development and exacerbation of chronic lung diseases. There is no effective vaccine, and we reasoned that it might be possible to skew the immune system towards beneficial nonpathogenic responses by selectively priming protective T-cell subsets. We therefore tested recombinant RSV (rRSV) candidates expressing prototypic murine Th1 (gamma interferon [IFN-γ]) or Th2 (interleukin-4 [IL-4]) cytokines, with detailed monitoring of responses to subsequent infections with RSV or (as a control) influenza A virus. Although priming with either recombinant vector reduced viral load during RSV challenge, enhanced weight loss and enhanced pulmonary influx of RSV-specific CD8+ T cells were observed after challenge in mice primed with rRSV/IFN-γ. By contrast, rRSV/IL-4-primed mice were protected against weight loss during secondary challenge but showed airway eosinophilia. When rRSV/IL-4-primed mice were challenged with influenza virus, weight loss was attenuated but was again accompanied by marked airway eosinophilia. Thus, immunization directed toward enhancement of Th1 responses reduces viral load but is not necessarily protective against disease. Counter to expectation, Th2-biased responses were more beneficial but also influenced the pathological effects of heterologous viral challenge.  相似文献   

8.

Background

Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F).

Methods

Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection.

Results

The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8+ T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8+ T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2.

Conclusions

Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8+ T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0244-0) contains supplementary material, which is available to authorized users.  相似文献   

9.
Two aspects of acquired resistance to Salmonella typhimurium infection in BALB/c mice, i.e., the ability to clear the primary inoculum from the spleen and resistance to a secondary challenge, were studied with the use of mAb against T cell subsets. The ability to clear a temperature-sensitive mutant of S. typhimurium from the spleen (assessed at day 21) was abrogated by in vivo treatment with anti-CD4 mAb. Accelerated bacterial clearance could be adoptively transferred into naive mice. In vitro depletion experiments also showed the role of CD4+ T cells in this phenomenon. Depletion of CD8+ T cells had only a marginal effect. Resistance to reinfection in the late phase of the primary infection (day 50) was markedly depressed by in vivo treatment with anti-CD4 mAb, whereas this was not the case during the early phase (day 14). Furthermore, during the early phase of infection athymic nude mice showed increased nonspecific resistance to reinfection. Taken together these results suggest that T-independent mechanisms play a major role in acquired resistance during the early phase of infection.  相似文献   

10.
Respiratory syncytial virus (RSV) is a major cause of lower respiratory infection in young children and the elderly. Studies of mice suggest that RSV suppresses the effector activity of CD8 T cells and the development of pulmonary CD8 T cell memory, in which the impaired effector activity could be recovered by in vitro IL-2 treatment. To investigate the effect of in vivo IL-2 expression on RSV immunity, mice were infected with RSV followed by administration of replication-defective adenovirus expressing IL-2. The effector activity of RSV M2-specific CD8 T cells and the development of CD8 T cell memory in the lung was significantly increased by IL-2 expression. Furthermore, the Ab responses against RSV were augmented by IL-2. Interestingly, weight loss and illness caused by RSV challenge were substantially reduced by IL-2 priming, suggesting that the pathogenesis of RSV-related disease could be prevented by IL-2-mediated enhancement of beneficial immune responses. Thus, our results show that IL-2 has potential to be used as a vaccine adjuvant against RSV infection.  相似文献   

11.
Secondary exposure to respiratory syncytial virus (RSV) can lead to immunopathology and enhanced disease in vaccinated individuals. Vaccination with individual RSV proteins influences the type of secondary RSV-specific immune response that develops upon challenge RSV infection, as well as the extent of immunopathology. RSV-specific memory CD4 T cells can directly contribute to immunopathology through their cytokine production. Immunization of BALB/c mice with a recombinant vaccinia virus (vv) expressing the attachment (G) protein of RSV results in pulmonary eosinophilia upon RSV challenge, whereas immunization of mice with a vv expressing the fusion (F) protein does not. We analyzed the CD4 T-cell response to an I-Ed-restricted CD4 T-cell epitope within the F protein of RSV corresponding to amino acids 51 to 66 in an effort to better understand the similarities and differences in the immune response elicited by the G versus the F protein. Vaccination with the G protein induces a mixture of RSV G-specific Th1 and Th2 cells with a restricted T-cell receptor repertoire. In contrast, we demonstrate here that immunization with the F protein elicits a broad repertoire of RSV F-specific CD4 T cells that predominantly exhibit a Th1 phenotype. However, in the absence of gamma interferon (IFN-γ), RSV F51-66-specific CD4 T cells secreted interleukin-5, and mice developed pulmonary eosinophilia after RSV challenge. IFN-γ-deficient mice exhibited decreased weight loss compared to wild-type controls, suggesting that IFN-γ exacerbates systemic disease. These data demonstrate that IFN-γ can have both beneficial and detrimental effects during a secondary RSV infection.  相似文献   

12.
It was previously demonstrated that the vaccinia virus recombinants expressing the respiratory syncytial virus (RSV) F, G, or M2 (also designated as 22K) protein (Vac-F, Vac-G, or Vac-M2, respectively) induced almost complete resistance to RSV challenge in BALB/c mice. In the present study, we sought to identify the humoral and/or cellular mediators of this resistance. Mice were immunized by infection with a single recombinant vaccinia virus and were subsequently given a monoclonal antibody directed against CD4+ or CD8+ T cells or gamma interferon (IFN-gamma) to cause depletion of effector T cells or IFN-gamma, respectively, at the time of RSV challenge (10 days after immunization). Mice immunized with Vac-F or Vac-G were completely or almost completely resistant to RSV challenge after depletion of both CD4+ and CD8+ T cells prior to challenge, indicating that these cells were not required at the time of virus challenge for expression of resistance to RSV infection induced by the recombinants. In contrast, the high level of protection of mice immunized with Vac-M2 was completely abrogated by depletion of CD8+ T cells, whereas depletion of CD4+ T cells or IFN-gamma resulted in intermediate levels of resistance. These results demonstrate that antibodies are sufficient to mediate the resistance to RSV induced by the F and G proteins, whereas the resistance induced by the M2 protein is mediated primarily by CD8+ T cells, with CD4+ T cells and IFN-gamma also contributing to resistance.  相似文献   

13.
During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3DTR mice (which allow specific conditional depletion of Foxp3+ T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4+ and CD8+ T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4+ T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease.  相似文献   

14.
Severe respiratory viral infection in early life is associated with recurrent wheeze and asthma in later childhood. Neonatal immune responses tend to be skewed toward T helper 2 (Th2) responses, which may contribute to the development of a pathogenic recall response to respiratory infection. Since neonatal Th2 skewing can be modified by stimulation with Toll-like receptor (TLR) ligands, we investigated the effect of exposure to CpG oligodeoxynucleotides (TLR9 ligands) prior to neonatal respiratory syncytial virus (RSV) infection in mice. CpG preexposure was protective against enhanced disease during secondary adult RSV challenge, with a reduction in viral load and an increase in Th1 responses. A similar Th1 switch and reduction in disease were observed if CpG was administered in the interval between neonatal infection and challenge. In neonates, CpG pretreatment led to a transient increase in expression of major histocompatibility complex class II (MHCII) and CD80 on CD11c-positive cells and gamma interferon (IFN-γ) production by NK cells after RSV infection, suggesting that the protective effects may be mediated by antigen-presenting cells (APC) and NK cells. We conclude that the adverse effects of early-life respiratory viral infection on later lung health might be mitigated by conditions that promote TLR activation in the infant lung.  相似文献   

15.
The anamnestic response to infection with Listeria monocytogenes is characterized by the rapid elimination of normally lethal doses of bacteria and accelerated granuloma formation. These phenomena are mediated by listeria-specific memory T cells within the first 24 h after reinfection. In order to elucidate the mechanisms operative during this decisive phase of infection, we conducted a comprehensive kinetic and quantitative analysis of cytokine gene expression in the livers of naive and immune mice. Organs were removed at 30 min, and 1, 2, 6, and 24 h after primary and secondary infections, and PCR3-assisted messenger RNA (mRNA) amplification was performed on matched samples using primers specific for IL-1 beta, IL-6, M-CSF, GM-CSF, TNF-alpha, IFN-gamma, IL-10, IL-4, IL-2, IL-3 and I1-2Rp55. The cytokine pattern characteristic of secondarily infected animals differed qualitatively by the expression of mRNA for IL-2, IL-2Rp55, IL-3, and IL-4, demonstrating the accumulation and activation of specific T cells in the livers as early as 1 to 2 h after reinfection. Combined in vivo depletion of both CD4+ and CD8+ T cells before reinfection almost completely abrogated the differentiated cytokine profile typical of the anamnestic response. Using competitive PCR for semiquantitative determination of mRNA levels, the amount of IL-1 beta and IL-6 mRNA was found to be very similar during primary and secondary infection, whereas TNF-alpha mRNA was found to be increased by approximately 10-fold 2 h and IFN-gamma mRNA by approximately 50 to 100-fold 6 h after reinfection when compared with a primary challenge. Combined in vivo depletion of both CD4+ and CD8+ T cells before reinfection resulted in a substantial (approximately 10-fold) decrease in IFN-gamma mRNA expression. To correlate these findings with cytokine secretion, spleen cells from naive and immune as well as normal and CD4+ and CD8+ cell depleted mice infected 6 h previously were cultured for 48 h, and supernatants were analyzed for the amount of the above mentioned cytokines. Semiquantitative PCR-assisted mRNA amplification is demonstrated to be a superior tool in dissociating the mediators of innate resistance from those operative in protective immunity and granuloma formation.  相似文献   

16.
Interleukin (IL-) 10 is a pleiotropic cytokine with broad immunosuppressive functions, particularly at mucosal sites such as the intestine and lung. Here we demonstrate that infection of BALB/c mice with respiratory syncytial virus (RSV) induced IL-10 production by CD4(+) and CD8(+) T cells in the airways at later time points (e.g. day 8); a proportion of these cells also co-produced IFN-γ. Furthermore, RSV infection of IL-10(-/-) mice resulted in more severe disease with enhanced weight loss, delayed recovery and greater cell infiltration of the respiratory tract without affecting viral load. In addition, IL-10(-/-) mice had a pronounced airway neutrophilia and heightened levels of pro-inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid. Notably, the proportion of lung T cells producing IFN-γ was enhanced, suggesting that IL-10 may act in an autocrine manner to dampen effector T cell responses. Similar findings were made in mice treated with anti-IL-10R antibody and infected with RSV. Therefore, IL-10 inhibits disease and inflammation in mice infected with RSV, especially during recovery from infection.  相似文献   

17.
Acquired immunity to murine Chlamydia trachomatis genital tract reinfection has long been assumed to be solely dependent on cell-mediated immunity. However, in this study, we identify a previously unrecognized protective role for Ab. Immunity develops in Ab-deficient mice following the resolution of primary chlamydial genital infection. Subsequent depletion of CD4+ T cells, but not CD8+ T cells, in those immune Ab-deficient mice before secondary infectious challenge, resulted in an infection that did not resolve. Passive immunization with immune (convalescent) serum conferred a marked level of protective immunity to reinfection, which was characterized by a striking decrease in bacterial shedding, from >100,000 inclusion forming units to fewer than 10 inclusion forming units, and a shortened duration of infection. Furthermore, mAbs to the chlamydial major outer membrane protein and LPS conferred significant levels of immunity to reinfection and reduced chlamydial shedding by >100-fold. Anti-heat shock protein 60 mAb had no protective effect. In contrast to the marked protective efficacy of immune serum on reinfection, the course of primary infection was essentially unaltered by the passive transfer of immune serum. Our results convincingly demonstrate that Abs contribute importantly to immunity to chlamydial genital tract reinfection, and that Ab-mediated protection is highly dependent on CD4+ T cell-mediated adaptive changes that occur in the local genital tract tissues during primary infection. These results impact our understanding of immunity to chlamydial genital infection and may provide important insight into vaccine development.  相似文献   

18.
In previous studies, it was observed that children immunized with a formalin-inactivated respiratory syncytial virus vaccine (FI-RSV) developed severe pulmonary disease with greater frequency during subsequent natural RSV infection than did controls. During earlier efforts to develop an animal model of this phenomenon, enhanced pulmonary histopathology was observed after intranasal RSV challenge of FI-RSV-immunized cotton rats. Progress in understanding the immunologic basis for these observations has been hampered by the lack of reagents useful in manipulating the immune response of the cotton rat. This problem prompted us to reinvestigate the characteristics of immunity to RSV in the mouse. In the present studies, extensive pulmonary histopathology was observed in FI-RSV-immunized or RSV-infected BALB/c mice upon RSV challenge, and studies to determine the relative contributions of CD4+ or CD8+ T cells to this process were undertaken. Mice previously immunized with FI-RSV or infected with RSV were depleted of CD4+, CD8+, or both T-cell subsets immediately prior to RSV challenge, and the magnitude of inflammatory cell infiltration around bronchioles and pulmonary blood vessels and into alveolar spaces was quantified. The magnitude of infiltration at each anatomic site in previously FI-RSV-immunized or RSV-infected, nondepleted animals was similar, indicating that this is not a relevant model for enhanced disease. However, the effect of T-cell subset depletion on pulmonary histopathology following RSV challenge was very different between the two groups. Depletion of CD4+ T cells completely abrogated pulmonary histopathology in FI-RSV-immunized mice, whereas it had a much smaller effect on mice previously infected with RSV. FI-RSV-immunized or RSV-infected animals depleted of CD8+ T cells had only a modest reduction of pulmonary histopathology. In addition, RSV infection induced high levels of major histocompatibility complex class I-restricted cytotoxic T-cell activity, whereas FI-RSV immunization induced a low level. These data indicate that immunization with FI-RSV induces a cellular immune response different from that induced by RSV infection, which likely played a role in enhanced disease observed in infants and children.  相似文献   

19.
Human metapneumovirus (hMPV), a member of the family Paramyxoviridae, is a leading cause of lower respiratory tract infections in children, the elderly, and immunocompromised patients. Virus- and host-specific mechanisms of pathogenesis and immune protection are not fully understood. By an intranasal inoculation model, we show that hMPV-infected BALB/c mice developed clinical disease, including airway obstruction and hyperresponsiveness (AHR), along with histopathologic evidence of lung inflammation and viral replication. hMPV infection protected mice against subsequent viral challenge, as demonstrated by undetectable viral titers, lack of body weight loss, and a significant reduction in the level of lung inflammation. No cross-protection with other paramyxoviruses, such as respiratory syncytial virus, was observed. T-lymphocyte depletion studies showed that CD4+ and CD8+ T cells cooperate synergistically in hMPV eradication during primary infection, but CD4+ more than CD8+ T cells also enhanced clinical disease and lung pathology. Concurrent depletion of CD4+ and CD8+ T cells completely blocked airway obstruction as well as AHR. Despite impaired generation of neutralizing anti-hMPV antibodies in the absence of CD4+ T cells, mice had undetectable viral replication after hMPV challenge and were protected from clinical disease, suggesting that protection can be provided by an intact CD8+ T-cell compartment. Whether these findings have implications for naturally acquired human infections remains to be determined.  相似文献   

20.
Following infection with respiratory syncytial virus (RSV), reinfection in healthy individuals is common and presumably due to ineffective memory T cell responses. In peripheral blood of healthy adults, a higher CD4(+)/CD8(+) memory T cell ratio was observed compared with the ratio of virus-specific effector CD4(+)/CD8(+) T cells that we had found in earlier work during primary RSV infections. In mice, we show that an enhanced ratio of RSV-specific neutralizing to nonneutralizing Abs profoundly enhanced the CD4(+) T cell response during RSV infection. Moreover, FcγRs and complement factor C1q contributed to this Ab-mediated enhancement. Therefore, the increase in CD4(+) memory T cell response likely occurs through enhanced endosomal Ag processing dependent on FcγRs. The resulting shift in memory T cell response was likely amplified by suppressed T cell proliferation caused by RSV infection of APCs, a route important for Ag presentation via MHC class I molecules leading to CD8(+) T cell activation. Decreasing memory CD8(+) T cell numbers could explain the inadequate immunity during repeated RSV infections. Understanding this interplay of Ab-mediated CD4(+) memory T cell response enhancement and infection mediated CD8(+) memory T cell suppression is likely critical for development of effective RSV vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号