首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free-living soybean rhizobia and Bradyrhizobium spp. (lupine) have the ability to catabolize ethanol. Of the 30 strains of rhizobia examined, only the fast- and slow-growing soybean rhizobia and the slow-growing Bradyrhizobium sp. (lupine) were capable of using ethanol as a sole source of carbon and energy for growth. Two strains from each of the other Rhizobium species examined (R. meliloti, R. loti, and R. leguminosarum biovars phaseoli, trifolii, and viceae) failed to grow on ethanol. One Rhizobium fredii (fast-growing) strain, USDA 191, and one (slow-growing) Bradyrhizobium japonicum strain, USDA 110, grew in ethanol up to concentrations of 3.0 and 1.0%, respectively. While three of the R. fredii strains examined (USDA 192, USDA 194, and USDA 205) utilized 0.2% acetate, only USDA 192 utilized 0.1% n-propanol. None of the three strains utilized 0.1% methanol, formate, or n-butanol as the sole carbon source.  相似文献   

2.
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains.  相似文献   

3.
This is the first report identifying bacteriophages and documenting megaplasmids of Sinorhizobium fredii. Plasmid DNA content and bacteriophage typing of eighteen strains of S. fredii were determined. S. fredii strains fell into ten plasmid profile groups containing 1 to 6 plasmids, some evidently larger than 1000 MDa. Twenty-three S. fredii lytic phages were isolated from soil, and they lysed six different S. fredii strains. The host range and plaque morphology of these phages were studied. Susceptibility to S. fredii phages was examined for S. meliloti; Rhizobium leguminosarum bvs. viceae, trifolii and Phaseoli; R. loti; Bradyrhizobium japonicum; B. elkanii and Bradyrhizobium sp. (Arachis). Several phages that originally lysed S. fredii strain USDA 206 also lysed strains of all three S. fredii serogroups described originally by Sadowsky et al. Phages that infected S. fredii strains USDA 191 and USDA 257 were highly specific and lysed only serogroup 193 strains. S. meliloti strains L5-30 and USDA 1005 were lysed by three of the phages that lysed S. fredii strain USDA 217. No other Rhizobium or Bradyrhizobium strain tested was susceptible to lysis by any of the S. fredii phages. The present investigation indicates that phage susceptibility in conjunction with plasmid profile analysis may provide a rapid method for identification and characterization of strains of S. fredii.  相似文献   

4.
The displacement of indigenous Bradyrhizobium japonicum in soybean nodules with more effective strains offers the possibility of enhanced N2 fixation in soybean (Glycine max (L.) Merr.). Our objective was to determine whether the wild soybean (G. soja Sieb. & Zucc.) genotype PI 468397 would cause reduced competitiveness of important indigenous B. japonicum strains USDA 31, 76, and 123 and thereby permit nodulation by Rhizobium fredii, the fast-growing microsymbiont of soybean. In an initial experiment, PI 468397 nodulated and fixed moderate amounts of N2 with USDA 31 and 76 but, despite the formation of nodules, fixed essentially no N2 with USDA 123. In contrast, PI 468397 formed a highly effective symbiosis with R. fredii strain USDA 193. In two subsequent experiments, Williams soybean and PI 468397 were grown in a pasteurized soil mixture or in soybean rhizobium-free soil and inoculated with both USDA 123 and USDA 193. In each experiment, more than 90% of the nodules of Williams contained USDA 123, while only a maximum of 2% were occupied with USDA 193. In contrast, in the two experiments, 16 and 11%, respectively, of the nodules produced on PI 468397 were occupied by USDA 123, while in both experiments 87% contained USDA 193. Thus, in relation to the cultivar Williams, which is commonly grown and used as a parent in soybean breeding programs in the United States, PI 468397 substantially reduced the competitive ability of B. japonicum strain USDA 123 in relation to R. fredii strain USDA 193.  相似文献   

5.
Antigenic relationships among seven strains of Bradyrhizobium japonicum were examined by immunodiffusion reactions, in which cells of each strain were reacted against each of the seven corresponding antisera. Similar analyses were performed with Rhizobium trifolii (28 strains), Rhizobium meliloti (9 strains), and rhizobia of the cowpea miscellany (13 strains). Antigens and antisera were reacted within each species only; serological interspecies cross-reactions were not performed. The results, scored qualitatively as reactions of identity, cross-reactions, or no reaction, were formed into datum matrices and used to analyze the relationships between strains by applying the association measure of Bray and Curtis (J. R. Bray and J. T. Curtis, Ecol. Monogr. 27:325-349, 1957) and the UPGMA clustering algorithm (P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, 1973). No two strains were regarded as being serologically identical unless each gave the same results as the other in each immunodiffusion reaction against every antiserum. Despite the high level of cross-reactions and reactions of identity (totalling 93% of all cell-antiserum combinations) among strains of R. trifolii and R. meliloti, no strains were identical by the criterion described above; however, the strains of these species clustered rapidly and fused at the 70% similarity level. The B. japonicum strains and the rhizobia of the cowpea miscellany were much less cross-reactive (67 and 86% of all combinations were negative, respectively), and they clustered more slowly. The strains of B. japonicum fused completely only at the 4% similarity level, whereas of the 13 cowpea-nodulating strains, 4 reacted as two pairs of identical strains and 6 remained unfused.  相似文献   

6.
Serological analysis of eleven strains ofRhizobium japonicum   总被引:2,自引:0,他引:2  
The present communication reports a serological analysis of eleven strains ofRhizobium japonicum. The slow-diffusing thermostable antigens were found to be suitable for the basic differentiation of the somatic serogroups inRhizobium japonicum. One to three precipitation bands of the slow-diffusing thermostable antigens, one to two bands of the fast-diffusing thermostable antigens and one to three bands of the thermolabile antigens were detectable in the whole cell cultures ofR. japonicum by means of the immunodiffusion technique. Two basic somatic serogroups were differentiated on the basis of the slow-diffusing thermostable antigens. The thermolabile antigens were identical in most of the strains.The author is greatly indebted to Mrs. M. Kabelovà for technical assistance.This investigation forms part of a contribution prepared by the Czechoslovak National Committee for the International Biological Programme (Section PP: Production Processes).  相似文献   

7.
Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10R. fredii strains withRhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. TheR. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated byR. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and commonnod genes,nodDABC; the soybean cultivar specificity gene,nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence fromR. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes,nolBTUVWX, was monomorphic. Using antisera against whole cells of threeR. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a singleR. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences amongR. fredii strains were as great as those between NGR234 andR. fredii, our results confirm that NGR234 has a distinctly wider host range thanR. fredii.  相似文献   

8.
The symbiotic potential of Bradyrhizobium japonicum isolates indigenous to seven Korean soils was evaluated by inoculating soybeans with 10- and 1,000-fold-diluted soil suspensions (whole-soil inocula). At both levels, significant differences in the symbiotic potential of the indigenous B. japonicum isolates were demonstrated. The relationship between rhizobial numbers in the whole-soil inocula (x) and nitrogen fixation parameters (y) was best predicted by a straight line (y = a + bx) when the numbers in the inocula were 100 to 10,000 ml-1, while the power curve (y = axb) predicted the variation when the numbers were 1 to 100 ml-1. Thirty isolates from three soils showed wide differences in effectiveness (measured as milligrams of shoot N per plant), and several were of equal or greater effectiveness than reference strain B. japonicum USDA 110 on soybean cultivars Clark and Jangbaekkong. On both of the soybean cultivars grown in a Hawaiian mollisol, the Korean B. japonicum isolate YCK 213 and USDA 110 were of equal effectiveness; USDA 110 was the superior strain in colonization (nodule occupancy). Korean isolates YCK 117 and YCK 141 were superior colonizers compared with USDA 110. However, B. japonicum USDA 123 was the superior colonizer compared with isolates YCK 213, YCK 141, and YCK 117. In an immunoblot analysis of 97 indigenous Korean isolates of B. japonicum, 41% fell into the USDA 110 and USDA 123 serogroups. Serogroups USDA 110 and USDA 123 were represented in six of the seven soils examined. In one Korean soil, 100% of the B. japonicum isolates reacted only with antisera of YCK 117, an isolate from the same soil.  相似文献   

9.
Melanin Production by Rhizobium Strains   总被引:6,自引:1,他引:5       下载免费PDF全文
Different Rhizobium and Bradyrhizobium strains were screened for their ability to produce melanin. Pigment producers (Mel+) were found among strains of R. leguminosarum biovars viceae, trifolii, and phaseoli, R. meliloti, and R. fredii; none of 19 Bradyrhizobium strains examined gave a positive response. Melanin production and nod genes were plasmid borne in R. leguminosarum biovar trifolii RS24. In R. leguminosarum biovar phaseoli CFN42 and R. meliloti GR015, mel genes were located in the respective symbiotic plasmids. In R. fredii USDA 205, melanin production correlated with the presence of its smallest indigenous plasmid.  相似文献   

10.
A survey was conducted in 1980 on 972 isolates of Rhizobium japonicum obtained from 65 soybean field locations in 12 states. Isolates were examined for the hydrogenase (Hup) phenotype and somatic serogroup identity. Only 20% of the isolates were Hup+, with a majority of Hup isolates occurring in 10 of the 12 states. The most predominant serogroup was 31 (21.5%), followed by 123 (13.6%). Although most serogroups contained a majority of Hup isolates, marked differences occurred. None of the isolates in serogroup 135 were Hup+, but 93% of the isolates in serogroup 122 were Hup+. The serogroups with relatively high frequencies of Hup+ isolates (122 and 110) constitute only a small part (<5% each) of the R. japonicum field population in the 12 states.  相似文献   

11.
A collection of 160 isolates of rhizobia nodulating Phaseolus vulgaris in three geographical regions in Tunisia was characterized by restriction fragment length polymorphism analysis of polymerase chain reaction (PCR)-amplified 16S rDNA, nifH and nodC genes. Nine groups of rhizobia were delineated: Rhizobium gallicum biovar (bv.) gallicum, Rhizobium leguminosarum bv. phaseoli and bv. viciae, Rhizobium etli bv. phaseoli, Rhizobium giardinii bv. giardinii, and four groups related to species of the genus Sinorhizobium, Sinorhizobium meliloti, Sinorhizobium medicae and Sinorhizobium fredii. The most abundant rhizobial species were R. gallicum, R. etli, and R. leguminosarum encompassing 29–20% of the isolates each. Among the isolates assigned to R. leguminosarum, two-thirds were ineffective in nitrogen fixation with P. vulgaris and harbored a symbiotic gene typical of the biovar viciae. The S. fredii-like isolates did not nodulate soybean plants but formed numerous effective nodules on P. vulgaris. Comparison of nodC gene sequences showed that their symbiotic genotype was not related to that of S. fredii, but to that of the S. fredii-like reference strain GR-06, which was isolated from a bean plant grown in a Spanish soil. An additional genotype including 16% of isolates was found to be closely related to species of the genus Agrobacterium. However, when re-examined, these isolates did not nodulate their original host.  相似文献   

12.
The application of sewage sludge to land may increase the concentration of heavy metals in soil. Of considerable concern is the effect of heavy metals on soil microorganisms, especially those involved in the biocycling of elements important to soil productivity. Bradyrhizobium japonicum is a soil bacterium involved in symbiotic nitrogen fixation with Glycine max, the common soybean. To examine the effect of metal-rich sludge application on B. japonicum, the MICs for Pb, Cu, Al, Fe, Ni, Zn, Cd, and Hg were determined in minimal media by using laboratory reference strains representing 11 common serogroups of B. japonicum. Marked differences were found among the B. japonicum strains for sensitivity to Cu, Cd, Zn, and Ni. Strain USDA 123 was most sensitive to these metals, whereas strain USDA 122 was most resistant. In field studies, a silt loam soil amended 11 years ago with 0, 56, or 112 Mg of digested sludge per ha was examined for total numbers of B. japonicum by using the most probable number method. Nodule isolates from soybean nodules grown on this soil were serologically typed, and their metal sensitivity was determined. The number of soybean rhizobia in the sludge-amended soils was found to increase with increasing rates of sludge. Soybean rhizobia strains from 11 serogroups were identified in the soils; however, no differences in serogroup distribution or proportion of resistant strains were found between the soils. Thus, the application of heavy metal-containing sewage sludge did not have a long-term detrimental effect on soil rhizobial numbers, nor did it result in a shift in nodule serogroup distribution.  相似文献   

13.
Three slow-growingBradyrhizobium japonicum (G3, USDA-110 and KUL-150) of diverse origins and two fast-growing strains ofRhizobium fredii (USDA-192 and USDA-193) were tested with a cropped soybean (Glycine max L. Merrill) cultivar, two cowpeas (Vigna unguiculata), one mung-bean (Phaseolus radiata), one winged-bean (Psophocarpus tetragonolobus) and one field bean (Phaseolus vulgaris) varieties.TheR. fredii strains nodulated and fixed Nitrogen as effectively as the strains ofB. japonicum in a modern european soybean cultivar, namely Fiskeby V. The other western bred soybeans tested were not nodulated by theseR. fredii strains. All of the soybean rhizobia produced nodules in both cowpeas and in mung-bean; theR. fredii strains showed effective N2-fixation in the cowpeas, particularly USDA-193, yielding shoot dry weights greater than those from theB. japonicum. The symbiotic performance of theR. fredii strains with soybean and other legumes indicated that they should be placed in an intermediate group between the slow-growingB. japonicum and cowpearhizobium sp.The hydrogen uptake activites suggested a possible host effect on the expression of such genes in one out of theB. japonicum strains tested. Furthermore, the slow-growing rhizobia showed significantly higher nitrate-reduction than theR. fredii in the nodules.  相似文献   

14.
A series of Rhizobium meliloti and Rhizobium trifolii strains were used as inocula for alfalfa and clover, respectively, grown under bacteriologically controlled conditions. Replicate samples of nodules formed by each strain were assayed for rates of H2 evolution in air, rates of H2 evolution under Ar and O2, and rates of C2H2 reduction. Nodules formed by all strains of R. meliloti and R. trifolii on their respective hosts lost at least 17% of the electron flow through nitrogenase as evolved H2. The mean loss from alfalfa nodules formed by 19 R. meliloti strains was 25%, and the mean loss from clover nodules formed by seven R. trifolii strains was 35%. R. meliloti and R. trifolii strains also were cultured under conditions that were previously established for derepression of hydrogenase synthesis. Only strains 102F65 and 102F51 of R. meliloti showed measurable activity under free-living conditions. Bacteroids from nodules formed by the two strains showing hydrogenase activity under free-living conditions also oxidized H2 at low rates. The specific activity of hydrogenase in bacteroids formed by either strain 102F65 or strain 102F51 of R. meliloti was less than 0.1% of the specific activity of the hydrogenase system in bacteroids formed by H2 uptake-positive Rhizobium japonicum USDA 110, which has been investigated previously. R. meliloti and R. trifolii strains tested possessed insufficient hydrogenase to recycle a substantial proportion of the H2 evolved from the nitrogenase reaction in nodules of their hosts. Additional research is needed, therefore, to develop strains of R. meliloti and R. trifolii that possess an adequate H2-recycling system.  相似文献   

15.
Of nine Bradyrhizobium japonicum serogroup 123 strains examined, 44% were found to be restricted for nodulation by cultivar Hill. Nodulation studies with soybean isoline BARC-2 confirmed that the soybean Rj4 allele restricts nodulation by the same serogroup 123 isolates. Immunological analyses indicated that B. japonicum strains in serogroups 123 and 31 share at least one surface somatic antigen.  相似文献   

16.
Because of the scarcity of literature on the successful use of serological methods for differentiation of Rhizobium meliloti isolates, the objectives of this study were to provide a rationale for selecting isolates to which antisera could be raised and to appraise the suitability of published methods of preparing R. meliloti antigens for the serological identification of field isolates. We used one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis to develop protein profiles of eight field isolates and one commercial inoculant strain of R. meliloti in order to choose candidates that were either identical or distinctly different from each other for the production of antisera. The serological methods of tube agglutination and gel immunodiffusion complemented the sodium dodecyl sulfate-polyacrylamide gel electrophoresis method of identification. On the basis of their agglutination titers and gel immunodiffusion analysis, the isolates were placed in five serogroups which were identical to the groupings based on protein profiles. Antigenic characteristics of gel immunodiffusion antigens were influenced by the composition of the growth medium, sonication of whole-cell antigens, and the addition of Formalin. We recommend that careful attention be given to the effects of varying antigen preparation procedures when analyzing R. meliloti so that experimental protocols do not complicate the results. The wide range of homologous-antiserum titers observed for the nine isolates indicates different inherent degrees of immunogenicity of R. meliloti which cannot be predicted before serum production. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis method is a useful tool for screening a collection of R. meliloti isolates to better ensure that strain-specific antisera representative of different types of organisms will be obtained.  相似文献   

17.
Although Rhizobium japonicum nodulates Vigna unguiculata and Macroptilium atropurpurem, little is known about the physiology of these symbioses. In this study, strains of R. japonicum of varying effectiveness on soybean were examined. The nonhomologous hosts were nodulated by all the strains tested, but effectiveness was not related to that of the homologous host. On siratro, compared to soybean, many strains reversed their relative effectiveness ranking. Both siratro and cowpea produced more dry matter with standard cowpea rhizobia CB756 and 176A22 than with the strains of R. japonicum. Strains USDA33 and USDA74 were more effective with siratro and cowpea than with soybean. The strain USDA122 expressed high rates of hydrogenase activity in symbiosis with the cowpea as well as the soybean host. The strains USDA61 and USDA74 expressed low levels of hydrogenase activity in symbiosis with cowpea, but no activity was found with soybean. Our results indicate host influence for the expression of hydrogenase activity, and suggest the possibility of host influence of nitrogenase for the allocation of electrons to N2 and H+.  相似文献   

18.
A broad-host-range plasmid, pEA2-21, containing a Bradyrhizobium japonicum nodABC'-'lacZ translational fusion was used to identify strain-specific inhibitors of the genes required for soybean nodulation, the common nod genes. The responses of type strains of B. japonicum serogroups USDA 110, USDA 123, USDA 127, USDA 129, USDA 122, and USDA 138 to nod gene inhibitors were compared. Few compounds inhibited nod gene expression in B. japonicum USDA 110. In contrast, nod gene expression in strains belonging to several other serogroups was inhibited by most of the flavonoids tested. However, the application of two of these strain-specific compounds, chrysin and naringenin, had little effect on the pattern of competition between indigenous and inoculum strains of B. japonicum in greenhouse and field trials. Preliminary studies with radiolabeled chrysin and naringenin suggest that the different responses to nod gene inhibitors may be partly due to the degree to which plant flavonoids can be metabolized by each strain.  相似文献   

19.
Diversity was examined within a group of 79 isolates of Bradyrhizobium japonicum reactive to fluorescent antibodies (FAs) prepared against B. japonicum USDA 123. Analyses were by means of cross-adsorbed FAs, bacteriophage typing, and endonuclease restriction digest patterns. Serogroups 127 and 129 shared antigenic determinants with serogroup 123 but not with each other. Bacteriophage and DNA digest patterns reflected more common features between serogroups 123 and 127 than between 123 and 129. Serogroups 129 and 122 showed FA cross-reactivity. The term serocluster was proposed to reflect interrelationships observed among the serogroups.  相似文献   

20.
A study was conducted to determine whether colonization of legume roots and nodulation byRhizobium meliloti andBradyrhizobium japonicum could be enhanced by using inocula containing microorganisms that produce antibiotics suppressing soil or rhizosphere inhabitants but not the root-nodule bacteria. An antibiotic-producing strain of Pseudomonas and one of Bacillus were isolated, and mutants ofR. meliloti andB. japonicum sp. resistant to the antibiotics were used. The colonization of the alfalfa rhizosphere and nodulation byR. meliloti were enhanced by inoculation of soil withPseudomonas sp. in soil initially containing 2.7×105 R. meliloti per g. The colonization of soybean roots byB. japonicum was enhanced by inoculating soil with three cell densities ofBacillus sp., and nodulation was stimulated byBacillus sp. added at two cell densities. In some tests, the dry weights of soybeans and seed yield increased as a result of these treatments, and co-inoculation with Bacillus also increased pod formation. Inoculation of seeds withBacillus sp. and the root-nodule bacterium enhanced nodulation of soybeans and alfalfa, but colonization byB. japonicum andR. meliloti was stimulated only during the early period of plant growth. Studies were also conducted withStreptomyces griseus and isolates ofR. meliloti andB. japonicum resistant to products of the actinomycete. Nodulation of alfalfa byR. meliloti was little or not affected by the actinomycete alone; however, both nodulation and colonization were enhanced if the soil was initially amended with chitin andS. griseus was also added. Chitin itself did not affectR. meliloti. Treatments of seeds with chitin orS. griseus alone did not enhance colonization of alfalfa roots byR. meliloti or soybean roots byB. japonicum, but the early colonization of the roots by both bacterial species was promoted if the seeds received both chitin andS. griseus; this treatment also increased nodulation and dry weights of alfalfa and soybeans and the N content of alfalfa. It is suggested that co-inoculation of legumes with antibiotic-producing microorganisms and root-nodule bacteria resistant to those antibiotics is a promising means of promoting nodulation and possibly nitrogen fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号