首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
Much recent modelling is focusing on epidemics in large-scale complex networks. Whether or not findings of these investigations also apply to networks of small size is still an open question. This is an important gap for many biological applications, including the spread of the oomycete pathogen Phytophthora ramorum in networks of plant nurseries. We use numerical simulations of disease spread and establishment in directed networks of 100 individual nodes at four levels of connectivity. Factors governing epidemic spread are network structure (local, small-world, random, scale-free) and the probabilities of infection persistence in a node and of infection transmission between connected nodes. Epidemic final size at equilibrium varies widely depending on the starting node of infection, although the latter does not affect the threshold condition for spread. The number of links from (out-degree) but not the number of links to (in-degree) the starting node of the epidemic explains a substantial amount of variation in final epidemic size at equilibrium irrespective of the structure of the network. The proportion of variance in epidemic size explained by the out-degree of the starting node increases with the level of connectivity. Targeting highly connected nodes is thus likely to make disease control more effective also in case of small-size populations, a result of relevance not just for the horticultural trade, but for epidemiology in general.  相似文献   

2.
A growing number of studies are investigating the effect of contact structure on the dynamics of epidemics in large-scale complex networks. Whether findings thus obtained apply also to networks of small size, and thus to many real-world biological applications, is still an open question. We use numerical simulations of disease spread in directed networks of 100 individual nodes with a constant number of links. We show that, no matter the type of network structure (local, small-world, random and scale-free), there is a linear threshold determined by the probability of infection transmission between connected nodes and the probability of infection persistence in an infected node. The threshold is significantly lower for scale-free networks compared to local, random and small-world ones only if super-connected nodes have a higher number of links both to and from other nodes. The starting point, the node at which the epidemic starts, does not affect the threshold conditions, but has a marked influence on the final size of the epidemic in all kinds of network. There is evidence that contact structure has an influence on the average final size of an epidemic across all starting nodes, with significantly lower values in scale-free networks at equilibrium. Simulations in scale-free networks show a distinctive time-series pattern, which, if found in a real epidemic, can be used to infer the underlying network structure. The findings have relevance also for meta-population ecology and species conservation.  相似文献   

3.
Scale-free networks, in which the distribution of the degrees obeys a power-law, are ubiquitous in the study of complex systems. One basic network property that relates to the structure of the links found is the degree assortativity, which is a measure of the correlation between the degrees of the nodes at the end of the links. Degree correlations are known to affect both the structure of a network and the dynamics of the processes supported thereon, including the resilience to damage, the spread of information and epidemics, and the efficiency of defence mechanisms. Nonetheless, while many studies focus on undirected scale-free networks, the interactions in real-world systems often have a directionality. Here, we investigate the dependence of the degree correlations on the power-law exponents in directed scale-free networks. To perform our study, we consider the problem of building directed networks with a prescribed degree distribution, providing a method for proper generation of power-law-distributed directed degree sequences. Applying this new method, we perform extensive numerical simulations, generating ensembles of directed scale-free networks with exponents between 2 and 3, and measuring ensemble averages of the Pearson correlation coefficients. Our results show that scale-free networks are on average uncorrelated across directed links for three of the four possible degree-degree correlations, namely in-degree to in-degree, in-degree to out-degree, and out-degree to out-degree. However, they exhibit anticorrelation between the number of outgoing connections and the number of incoming ones. The findings are consistent with an entropic origin for the observed disassortativity in biological and technological networks.  相似文献   

4.
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.  相似文献   

5.
《Ecological Complexity》2005,2(3):287-299
Individuals in a population susceptible to a disease may be represented as vertices in a network, with the edges that connect vertices representing social and/or spatial contact between individuals. Networks, which explicitly included six different patterns of connection between vertices, were created. Both scale-free networks and random graphs showed a different response in path level to increasing levels of clustering than regular lattices. Clustering promoted short path lengths in all network types, but randomly assembled networks displayed a logarithmic relationship between degree and path length; whereas this response was linear in regular lattices. In all cases, small-world models, generated by rewiring the connections of a regular lattice, displayed properties, which spanned the gap between random and regular networks.Simulation of a disease in these networks showed a strong response to connectance pattern, even when the number of edges and vertices were approximately equal. Epidemic spread was fastest, and reached the largest size, in scale-free networks, then in random graphs. Regular lattices were the slowest to be infected, and rewired lattices were intermediate between these two extremes. Scale-free networks displayed the capacity to produce an epidemic even at a likelihood of infection, which was too low to produce an epidemic for the other network types. The interaction between the statistical properties of the network and the results of epidemic spread provides a useful tool for assessing the risk of disease spread in more realistic networks.  相似文献   

6.
Network theory has been applied to many aspects of biosciences, including epidemiology. Most epidemiological models in networks, however, have used the standard assumption of either susceptible or infected individuals. In some cases (e.g. the spread of Phytophthora ramorum in plant trade networks), a continuum in the infection status of nodes can better capture the reality of epidemics in networks. In this paper, a Susceptible-Infected-Susceptible model along a continuum in the infection status (SIS(c)) is presented, using as a case study directed networks and two parameters governing the epidemic process (probability of infection persistence (p(p)) and of infection transmission (p(t)). The previously empirically reported linear epidemic threshold in a plot of p(p) as a function of p(t) (Pautasso and Jeger, 2008) is derived analytically. Also the previously observed negative correlation between the epidemic threshold and the correlation between links in and out of nodes (Moslonka-Lefebvre et al., 2009) is justified analytically. A simple algorithm to calculate the threshold conditions is introduced. Additionally, a control strategy based on targeting market hierarchical categories such as producers, wholesalers and retailers is presented and applied to a realistic reconstruction of the UK horticultural trade network. Finally, various applications (e.g., seed exchange networks, food trade, spread of ideas) and potential refinements of the SIS(c) model are discussed.  相似文献   

7.
Network frailty and the geometry of herd immunity   总被引:2,自引:0,他引:2  
The spread of infectious disease through communities depends fundamentally on the underlying patterns of contacts between individuals. Generally, the more contacts one individual has, the more vulnerable they are to infection during an epidemic. Thus, outbreaks disproportionately impact the most highly connected demographics. Epidemics can then lead, through immunization or removal of individuals, to sparser networks that are more resistant to future transmission of a given disease. Using several classes of contact networks-Poisson, scale-free and small-world-we characterize the structural evolution of a network due to an epidemic in terms of frailty (the degree to which highly connected individuals are more vulnerable to infection) and interference (the extent to which the epidemic cuts off connectivity among the susceptible population that remains following an epidemic). The evolution of the susceptible network over the course of an epidemic differs among the classes of networks; frailty, relative to interference, accounts for an increasing component of network evolution on networks with greater variance in contacts. The result is that immunization due to prior epidemics can provide greater community protection than random vaccination on networks with heterogeneous contact patterns, while the reverse is true for highly structured populations.  相似文献   

8.
Inferring disease transmission networks is important in epidemiology in order to understand and prevent the spread of infectious diseases. Reconstruction of the infection transmission networks requires insight into viral genome data as well as social interactions. For the HIV-1 epidemic, current research either uses genetic information of patients'' virus to infer the past infection events or uses statistics of sexual interactions to model the network structure of viral spreading. Methods for a reliable reconstruction of HIV-1 transmission dynamics, taking into account both molecular and societal data are still lacking. The aim of this study is to combine information from both genetic and epidemiological scales to characterize and analyse a transmission network of the HIV-1 epidemic in central Italy.We introduce a novel filter-reduction method to build a network of HIV infected patients based on their social and treatment information. The network is then combined with a genetic network, to infer a hypothetical infection transmission network. We apply this method to a cohort study of HIV-1 infected patients in central Italy and find that patients who are highly connected in the network have longer untreated infection periods. We also find that the network structures for homosexual males and heterosexual populations are heterogeneous, consisting of a majority of ‘peripheral nodes’ that have only a few sexual interactions and a minority of ‘hub nodes’ that have many sexual interactions. Inferring HIV-1 transmission networks using this novel combined approach reveals remarkable correlations between high out-degree individuals and longer untreated infection periods. These findings signify the importance of early treatment and support the potential benefit of wide population screening, management of early diagnoses and anticipated antiretroviral treatment to prevent viral transmission and spread. The approach presented here for reconstructing HIV-1 transmission networks can have important repercussions in the design of intervention strategies for disease control.  相似文献   

9.
Gravity models have a long history of use in describing and forecasting the movements of people as well as goods and services, making them a natural basis for disease transmission rates over distance. In agent-based micro-simulations, gravity models can be directly used to represent movement of individuals and hence disease. In this paper, we consider a range of gravity models as fits to movement data from the UK and the US. We examine the ability of synthetic networks generated from fitted models to match those from the data in terms of epidemic behaviour; in particular, times to first infection. For both datasets, best fits are obtained with a two-piece ‘matched’ power law distance distribution. Epidemics on synthetic UK networks match well those on data networks across all but the smallest nodes for a range of aggregation levels. We derive an expression for time to infection between nodes in terms of epidemiological and network parameters which illuminates the influence of network clustering in spread across networks and suggests an approximate relationship between the log-likelihood deviance of model fit and the match times to infection between synthetic and data networks. On synthetic US networks, the match in epidemic behaviour is initially poor and sensitive to the initially infected node. Analysis of times to infection indicates a failure of models to capture infrequent long-range contact between large nodes. An assortative model based on node population size captures this heterogeneity, considerably improving the epidemiological match between synthetic and data networks.  相似文献   

10.
Recently, the focus of conservation efforts gradually changed from a species-centred approach to a broader ambition of conserving functional ecosystems. This new approach relies on the understanding that much ecosystem function is a result of the interaction of species to form complex interaction networks. Therefore measures summarising holistic attributes of such ecological networks have the potential to provide useful indicators to guide and assess conservation objectives. The most generally accepted insight is that complexity in species interactions, measured by network connectance, is an important attribute of healthy communities which usually protects them from secondary extinctions. An implicit and overlooked corollary to this generalization is that conservation efforts should be directed to conserve highly connected communities. We conducted a literature review to search for empirical evidence of a relationship between connectance (complexity) and conservation value (communities on different stages of degradation). Our results show that the often assumed positive relationship between highly connected and desirable (i.e. with high conservation value) communities does not derive from empirical data and that the topic deserves further discussion. Given the conflicting empirical evidence revealed in this study, it is clear that connectance on its own cannot provide clear information about conservation value. In the face of the ongoing biodiversity crisis, studies of species interaction networks should incorporate the different ‘conservation value’ of nodes (i.e. species) in a network if it is to be of practical use in guiding and evaluating conservation practice.  相似文献   

11.
A random network model which allows for tunable, quite general forms of clustering, degree correlation and degree distribution is defined. The model is an extension of the configuration model, in which stubs (half-edges) are paired to form a network. Clustering is obtained by forming small completely connected subgroups, and positive (negative) degree correlation is obtained by connecting a fraction of the stubs with stubs of similar (dissimilar) degree. An SIR (Susceptible $\rightarrow $ Infective $\rightarrow $ Recovered) epidemic model is defined on this network. Asymptotic properties of both the network and the epidemic, as the population size tends to infinity, are derived: the degree distribution, degree correlation and clustering coefficient, as well as a reproduction number $R_*$ , the probability of a major outbreak and the relative size of such an outbreak. The theory is illustrated by Monte Carlo simulations and numerical examples. The main findings are that (1) clustering tends to decrease the spread of disease, (2) the effect of degree correlation is appreciably greater when the disease is close to threshold than when it is well above threshold and (3) disease spread broadly increases with degree correlation $\rho $ when $R_*$ is just above its threshold value of one and decreases with $\rho $ when $R_*$ is well above one.  相似文献   

12.
Both the threat of bioterrorism and the natural emergence of contagious diseases underscore the importance of quantitatively understanding disease transmission in structured human populations. Over the last few years, researchers have advanced the mathematical theory of scale-free networks and used such theoretical advancements in pilot epidemic models. Scale-free contact networks are particularly interesting in the realm of mathematical epidemiology, primarily because these networks may allow meaningfully structured populations to be incorporated in epidemic models at moderate or intermediate levels of complexity. Moreover, a scale-free contact network with node degree correlation is in accord with the well-known preferred mixing concept. The present author describes a semi-empirical and deterministic epidemic modeling approach that (a) focuses on time-varying rates of disease transmission in both unstructured and structured populations and (b) employs probability density functions to characterize disease progression and outbreak controls. Given an epidemic curve for a historical outbreak, this modeling approach calls for Monte Carlo calculations (that define the average new infection rate) and solutions to integro-differential equations (that describe outbreak dynamics in an aggregate population or across all network connectivity classes). Numerical results are obtained for the 2003 SARS outbreak in Taiwan and the dynamical implications of time-varying transmission rates and scale-free contact networks are discussed in some detail.  相似文献   

13.
The topology of regulatory networks contains clues to their overall design principles and evolutionary history. We find that while in- and out-degrees of a given protein in the regulatory network are not correlated with each other, there exists a strong negative correlation between the out-degree of a regulatory protein and in-degrees of its targets. Such correlation positions large regulatory modules on the periphery of the network and makes them rather well separated from each other. We also address the question of relative importance of different classes of proteins quantified by the lethality of null-mutants lacking one of them as well as by the level of their evolutionary conservation. It was found that in the yeast regulatory network highly connected proteins are in fact less important than their low-connected counterparts.  相似文献   

14.
The live plant nursery trade is a potential vector for pests and pathogens, which can spread to natural and developed environments with unintended ecosystem consequences. Simulated, approximately scale-free, tiered horticultural trade networks consisting of growers, wholesalers, and retailers were used to study the efficacy of quarantine inspection and isolation procedures for reducing the spread of infected materials to consumers. The quarantine algorithm temporarily isolated infected nurseries from the rest of the trade network, rewiring the affected trade connections to unquarantined nodes, until the infection was reduced below the detection threshold, at which time the formerly infected nursery was reincorporated into the trade network.Nodes were inspected for infection at regular intervals. Increasing the inspection interval resulted in higher levels of infection with large, system-wide oscillations whose period that matched the inspection interval. The timing of quarantine inspections of the largest hub in the grower tier drove the dynamics of the entire network. Increasing the proportion of growers or wholesalers increased infection level in most networks. Increasing the connectivity within the grower and wholesaler tiers led to large increases in mean infection levels. Focusing quarantine inspection efforts on hubs in the grower and wholesaler tiers may be the most efficient method for reducing the level of infected plant material sold by retailers in real plant trade networks.  相似文献   

15.
In this paper, we present algorithms to find near-optimal sets of epidemic spreaders in complex networks. We extend the notion of local-centrality, a centrality measure previously shown to correspond with a node''s ability to spread an epidemic, to sets of nodes by introducing combinatorial local centrality. Though we prove that finding a set of nodes that maximizes this new measure is NP-hard, good approximations are available. We show that a strictly greedy approach obtains the best approximation ratio unless P = NP and then formulate a modified version of this approach that leverages qualities of the network to achieve a faster runtime while maintaining this theoretical guarantee. We perform an experimental evaluation on samples from several different network structures which demonstrate that our algorithm maximizes combinatorial local centrality and consistently chooses the most effective set of nodes to spread infection under the SIR model, relative to selecting the top nodes using many common centrality measures. We also demonstrate that the optimized algorithm we develop scales effectively.  相似文献   

16.
Hadidjojo J  Cheong SA 《PloS one》2011,6(7):e22124
Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will only become more severe as population density in urban centers grows. Social interactions play a very important role in determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics.  相似文献   

17.
18.
A "contact network" that models infection transmission comprises nodes (or individuals) that are linked when they are in contact and can potentially transmit an infection. Through analysis and simulation, we studied the influence of the distribution of the number of contacts per node, defined as degree, on infection spreading and its control by vaccination. Three random contact networks of various degree distributions were examined. In a scale-free network, the frequency of high-degree nodes decreases as the power of the degree (the case of the third power is studied here); the decrease is exponential in an exponential network, whereas all nodes have the same degree in a constant network. Aiming for containment at a very early stage of an epidemic, we measured the sustainability of a specific network under a vaccination strategy by employing the critical transmissibility larger than which the epidemic would occur. We examined three vaccination strategies: mass, ring, and acquaintance. Irrespective of the networks, mass preventive vaccination increased the critical transmissibility inversely proportional to the unvaccinated rate of the population. Ring post-outbreak vaccination increased the critical transmissibility inversely proportional to the unvaccinated rate, which is the rate confined to the targeted ring comprising the neighbors of an infected node; however, the total number of vaccinated nodes could mostly be fewer than 100 nodes at the critical transmissibility. In combination, mass and ring vaccinations decreased the pathogen's "effective" transmissibility each by the factor of the unvaccinated rate. The amount of vaccination used in acquaintance preventive vaccination was lesser than the mass vaccination, particularly under a highly heterogeneous degree distribution; however, it was not as less as that used in ring vaccination. Consequently, our results yielded a quantitative assessment of the amount of vaccination necessary for infection containment, which is universally applicable to contact networks of various degree distributions.  相似文献   

19.
20.
The efficacy of contact tracing, be it between individuals (e.g. sexually transmitted diseases or severe acute respiratory syndrome) or between groups of individuals (e.g. foot-and-mouth disease; FMD), is difficult to evaluate without precise knowledge of the underlying contact structure; i.e. who is connected to whom? Motivated by the 2001 FMD epidemic in the UK, we determine, using stochastic simulations and deterministic 'moment closure' models of disease transmission on networks of premises (nodes), network and disease properties that are important for contact tracing efficiency. For random networks with a high average number of connections per node, little clustering of connections and short latency periods, contact tracing is typically ineffective. In this case, isolation of infected nodes is the dominant factor in determining disease epidemic size and duration. If the latency period is longer and the average number of connections per node small, or if the network is spatially clustered, then the contact tracing performs better and an overall reduction in the proportion of nodes that are removed during an epidemic is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号