首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A variety of folate analogues were synthesized to explore the specificity of the folate binding site of hog liver folylpolyglutamate synthetase and the requirements for catalysis. Modifications of the internal and terminal glutamate moieties of folate cause large drops in on rates and/or affinity for the protein. The only exceptions are glutamine, homocysteate, and ornithine analogues, indicating a less stringent specificity around the delta-carbon of glutamate. It is proposed that initial folate binding to the enzyme involves low-affinity interactions at a pterin and a glutamate site and that the first glutamate bound is the internal residue adjacent to the benzoyl group. Processive movement of the polyglutamate chain through the glutamate site and a possible conformational change in the protein when the terminal residue is bound would result in tight binding and would position the gamma-carboxyl of the terminal glutamate in the correct position for catalysis. Steric limitations imposed on the internal glutamate residues that loop out and additional steric constraints imposed by binding of different pterin moieties would be expected to effect slight conformational changes in the protein and/or the terminal glutamate and would explain the decrease in on rate and catalytic rate with increased polyglutamate chain length, and the differential effect of one-carbon substitution on the catalytic rate with polyglutamate derivatives. The 4-amino substitution of folate increases the on rate for monoglutamate derivatives but severely impairs catalysis with diglutamate derivatives. Pteroylornithine derivatives are the first potent and specific inhibitors of folylpolyglutamate synthetase to be identified and may act as analogues of reaction intermediates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis (kcat = 2.5 s-1) while 5- and 10-position substitutions of the folate molecule impair catalysis. kcat values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. The on rates for most pteroyldiglutamates are similar to the rates for their respective monoglutamate derivatives, but further extension of the glutamate chain results in a progressive decrease in on rates. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The Km for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and beta,gamma-methylene-ATP, beta,gamma-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P1,P5-di(adenosine-5') pentaphosphate, and free ATP4- are potent inhibitors of the reaction.  相似文献   

3.
Folylpolyglutamate synthetase was purified 30,000-150,000-fold from hog liver. Purification required the use of protease inhibitors, and the protein was purified to homogeneity in two forms. Both forms of the enzyme were monomers of Mr 62,000 and had similar specific activities. The specific activity of the homogeneous protein was over 2000-fold higher than reported for partially purified folylpolyglutamate synthetases from other mammalian sources. Enzyme activity was absolutely dependent on the presence of a reducing agent and a monovalent cation, of which K+ was most effective. The purified enzyme catalyzed a MgATP-dependent addition of glutamate to tetrahydrofolate with the concomitant stoichiometric formation of MgADP and phosphate. Under conditions that resembled the expected substrate and enzyme concentrations in hog liver, tetrahydrofolate was metabolized to long glutamate chain length derivatives with the hexaglutamate, the major in vivo folate derivative, predominating. Enzyme activity was maximal at about pH 9.5. The high-pH optimum was primarily due to an increase in the Km value for the L-glutamate substrate at lower pH values, and the reaction proceeded effectively at physiological pH provided high levels of glutamate were supplied.  相似文献   

4.
Mammalian folate metabolism. Regulation of folate interconversion enzymes   总被引:1,自引:0,他引:1  
P B Rowe  G P Lewis 《Biochemistry》1973,12(10):1862-1869
  相似文献   

5.
The regulation of folate and methionine metabolism.   总被引:12,自引:7,他引:5       下载免费PDF全文
H A Krebs  R Hems    B Tyler 《The Biochemical journal》1976,158(2):341-353
1. The isolated perfused rat liver and suspensions of isolated rat hepatocytes fail to form glucose from histidine, in contrast with the liver in vivo. Both rat liver preparations readily metabolize histidine. The main end product is N-formiminoglutamate. In this respect the liver preparations behave like the liver of cobalamin- or folate-deficient mammals. 2. Additions of L-methionine in physiological concentrations (or of ethionine [2-amino-4-(ethylthio)butyric acid]) promotes the degradation of formiminoglutamate, as is already known to be the case in cobalamin of folate deficiency. Added methionine also promotes glucose formation from histidine. 3. Addition of methionine accelerates the oxidation of formate to bicarbonate by hepatocytes. 4. A feature common to cobalamin-deficient liver and the isolated liver preparations is taken to be a low tissue methionine concentration, to be expected in cobalamin deficiency through a decreased synthesis of methionine and caused in liver preparations by a washing out of amino acids during the handling of the tissue. 5. The available evidence is in accordance with the assumption that methionine does not directly increase the catalytic capacity of formyltetrahydrofolate dehydrogenase; rather, that an increased methionine concentration raises the concentration of S-adenosylmethionine, thus leading to the inhibition of methylenetetrahydrofolate reductase activity [Kutzbach & Stokstad (1967) Biochim. Biophys. Acta 139, 217-220; Kutzbach & Stokstad (1971) Methods Enzymol. 18B, 793-798], that this inhibition causes an increase in the concentration of methylenetetrahydrofolate and the C1 tetrahydrofolate derivatives in equilibrium with methylenetetrahydrofolate, including 10-formyltetrahydrofolate; that the increased concentration of the latter accelerates the formyltetrahydrofolate dehydrogenase reaction, because the normal concentration of the substrate is far below the Km value of the enzyme for the substrate. 6. The findings are relevant to the understanding of the regulation of both folate and methionine metabolism. When the methionine concentration is low, C1 units are preserved by the decreased activity of formyltetrahydrofolate dehydrogenase and are utilized for the synthesis of methionine, purines and pyrimidines. On the other hand when the concentration of methionine, and hence adenosylmethionine, is high and there is a surplus of C1 units as a result of excess of dietary supply, formyltetrahydrofolate dehydrogenase disposes of the excess. When ample dietary supply causes an excess of methionine, which has to be disposed of by degradation, the increased activity of formyltetrahydrofolate dehydrogenase decreases the supply of methyltetrahydrofolate. Thus homocysteine, instead of being remethylated, enters the pathway of degradation via cystathionine. 7. The findings throw light on the biochemical abnormalities associated with cobalamin deficiency (megaloblastic anaemia), especially on the 'methylfolate-trap hypothesis'. This is discussed. 8...  相似文献   

6.
In vivo regulation of rat muscle glycogen synthetase activity   总被引:12,自引:0,他引:12  
R Piras  R Staneloni 《Biochemistry》1969,8(5):2153-2160
  相似文献   

7.
The substrate specificity of pig liver folylpolyglutamate synthetase (tetrahydrofolate:L-glutamate gamma-ligase (ADP-forming), EC 6.3.2.17) for classical 5,8-dideaza analogues of folic acid, isofolic acid aminopterin and isoaminopterin has been investigated. 5,8-Dideazafolate and 5,8-dideazaaminopterin are very effective substrates with activities approaching those of the best reduced folate substrates. The analogous isofolate analogues are less effective substrates, but still better than folic acid. The 5-chloro substituent is the only modification that consistently increases the on rate, with 5-chloro-5,8-dideazaaminopterin being the most effective substrate found, thus far, for the enzyme. Methylation at positions 9 or 10 generally decreases binding, while 5-methylation increases the binding of 4-oxoquinazolines, but decreases the binding of their 4-amino counterparts. The presence of a formyl group at N9 or N10 has the opposite effect, decreasing the binding of 4-oxo analogues while increasing the rate for 4-amino derivatives. Increases in on rate with methyl, formyl or 4-amino substitutions are only significant when the parent compound is a poor substrate, suggesting that these groups do not interact directly with the enzyme but cause conformational changes in the structure of the substrate that influence binding to the enzyme.  相似文献   

8.
Folates are indispensable for plant development, but their molecular mode of action remains elusive. We synthesized a probe, “5-F-THF-Dayne,” comprising 5-formyl-tetrahydrofolate (THF) coupled to a photoaffinity tag. Exploiting this probe in an affinity proteomics study in Arabidopsis thaliana, we retrieved 51 hits. Thirty interactions were independently validated with in vitro expressed proteins to bind 5-F-THF with high or low affinity. Interestingly, the interactors reveal associations beyond one-carbon metabolism, covering also connections to nitrogen (N) metabolism, carbohydrate metabolism/photosynthesis, and proteostasis. Two of the interactions, one with the folate biosynthetic enzyme DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYNTHASE 1 (AtDHFR-TS1) and another with N metabolism-associated glutamine synthetase 1;4 (AtGLN1;4), were further characterized. In silico and experimental analyses revealed G35/K36 and E330 as key residues for the binding of 5-F-THF in AtDHFR-TS1 and AtGLN1;4, respectively. Site-directed mutagenesis of AtGLN1;4 E330, which co-localizes with the ATP-binding pocket, abolished 5-F-THF binding as well as AtGLN1;4 activity. Furthermore, 5-F-THF was noted to competitively inhibit the activities of AtDHFR-TS1 and AtGLN1;4. In summary, we demonstrated a regulatory role for 5-F-THF in N metabolism, revealed 5-F-THF-mediated feedback regulation of folate biosynthesis, and identified a total of 14 previously unknown high-affinity binding cellular targets of 5-F-THF. Together, this sets a landmark toward understanding the role of folates in plant development.

Exploration of proteins that interact or bind with folates reveals folate-modulated growth and development in Arabidopsis.  相似文献   

9.
L C Yip  S Roome  M E Balis 《Biochemistry》1978,17(16):3286-3291
Upon storage, human erythrocyte phosphoribosyl pyrophosphate synthetase (PRibPP synthetase, EC 2.7.6.1) from normal individuals was found to undergo a spontaneous dissociation into active enzyme components of much smaller molecular mass (60 000--90 000). These modified forms of enzyme exhibit kinetic properties different from the original large molecular weight enzyme (over 200 000). The small active components can be reversibly associated to form larger molecules in the presence of purine ribonucleotides as well as phosphoribosyl pyrophosphate (PRibPP). ATP was found to be most effective in associating PRibPP synthetase, while guanylate nucleotides seem to have no effect. The large molecular weight components, once separated from the milieu, were not able to undergo further dissociation. Fresh or stored human white cell tissue homogenates were found to lack the low-molecular-weight enzyme under all our experimental conditions. A characteristic enzyme modification similar to that observed in stored erythrocyte was also noted in erythrocytes of increasing ages. The physiological significance of these findings to the regulatory function of PRibPP synthetase in purine metabolism in vivo is discussed.  相似文献   

10.
11.
12.
原始生殖细胞(primordial germ cells, PGCs)是胚胎中最先出现的生殖细胞。PGCs来源于上胚层,最早出现在后肠,随后向生殖嵴迁移。这一过程伴随一系列复杂的分子调控机制,以及DNA甲基化重编程和组蛋白修饰等表观遗传过程。PGCs经过不断的分裂、发育及分化,最终形成配子。为了更好地研究PGCs发育与分化的调控和表观遗传过程,体外培养的研究变得越来越重要。本文以小鼠和人为例,介绍了哺乳动物PGCs的特化过程、PGCs特化过程中的表观遗传过程和PGCs的体外培养研究进展。  相似文献   

13.
In rats 80 to 95% of 4'-deoxypyridoxine administered intraperitoneally, intravenously, intramuscularly, or subcutaneously was excreted in the urine within 7.5 hours. Orally administered deoxypyridoxine was also rapidly eliminated. Over one-half of the excreted material appeared as deoxypyridoxine-3-(hydrogen sulfate) and the remainder as unchanged deoxypyridoxine. Tissue concentrations of deoxypyridoxine 5'phosphate were comparable to those of pyridoxal 5'phosphate. In normal men about 50% of a single oral dose (3 to 7.5 mg/kg of body weight) appeared in the urine within 6 hours. 4'Deoxy-5-pyridoxic acid accounted for 50 to 100% of the excreted material. The remainder was unchanged deoxypyridoxine. No deoxypyridoxine-3-(hydrogen sulfate) was detected in human urine and no 4'-deoxy-5-pyridoxic acid was found in rat urine. Deoxypyridoxine 5'-phosphate was not detected in the urine of either species. The complexity of deoxypyridoxine metabolism indicated by these data suggests the use of caution in extrapolating data obtained with deoxypyridoxine to B6 metabolism in the absence of deoxypyridoxine, and particularly in extrapolating results from the rat to man. Synthesis for 4'-deoxypyridoxine-3-(ethyl carbonate), 4'-deoxypyridoxine 5'-acetate, 4'-deoxy-3-0-(2-sulfoethyl)-pyridoxine, and the metabolites are presented. These synthesis were facilitated by using ethylchloroformate conjugates and N-methylpiperazine hydrolysis to block and unblock the phenol group.  相似文献   

14.
Glutamine synthetase from Synechocystis sp. strain PCC 6803 is inactivated by ammonium addition to cells growing with nitrate as the nitrogen source. The enzyme can be reactivated in vitro by different methods such as alkaline phosphatase treatment, but not phosphodiesterase, by raising the pH of the crude extract to values higher than 8, by increasing the ionic strength of the cell-free extract, or by preincubation with organic solvents, such as 2-propanol and ethanol. These results suggest that the loss of glutamine synthetase activity promoted by ammonium involves the non-covalent binding of a phosphorylated compound to the enzyme and support previous results that rule out the existence of an adenylylation/deadenylylation system functioning in the regulation of cyanobacterial glutamine synthetase.  相似文献   

15.
16.
Summary Induced wildtype cells ofA. nidulans rapidly lost NADPH — linked nitrate reductase activity when subjected to carbon and or nitrogen starvation. A constitutive mutant at the regulatory gene for nitrate reductase,nirA c1, rapidly lost nitrate reductase activity upon carbon starvation. This loss of activity is thought to be due to a decrease in the NADPH concentration in the cells. Cell free extracts from wild-type cells grown in the presence of nitrate, rapidly lost their nitrate reductase activity when incubated at 25° C. NADPH prevented this loss of activity. Wildtype cells grown in the presence of nitrate and urea have a higher initial NADPH: NADP+ ratio and cell free extracts from such cells lost their nitrate reductase activity slower than extracts of cells grown with nitrate alone.The Pentose Phosphate Pathway mutant,pppB-1, had a lower NADPH concentration compared with the wildtype grown under the same conditions and cell free extracts lost their nitrate reductase activity more rapidly than the wildtype. Cell free extracts ofnirA c-1 and a non-inducible mutant for nitrate reductase,nirA --14, upon incubation lost little of their nitrate reductase activity.  相似文献   

17.
Myristicin [5-allyl-1-methoxy-2,3-(methylenedioxy)benzene] is a flavoring plant constituent and has been known to produce significant psychopharmacological responses as well as insecticidal activity. From in vitro and in vivo metabolism of myristicin, the two metabolites 5-allyl-1-methoxy-2,3-dihydroxybenzene and 1′-hydroxymyristicin were identified using GC–MS after derivatization of sample matrices with a mixture of BSTFA–TMCS. Those metabolites from in vitro study were also confirmed in urine after an oral administration of myrisitcin to rats, and enzymatic hydrolysis of urine suggested that these metabolites were excreted as conjugated forms as well.  相似文献   

18.
19.
Brassinosteroids are a novel group of steroids that appear to be ubiquitous in plants and are essential for normal plant growth and development. It has been previously reported that brassinosteroid analogues exert an antiviral activity against herpes simplex virus type 1 (HSV-1) and arenaviruses. In the present study, we report the chemical synthesis of compounds (22S,23S)-3beta-bromo-5alpha,22,23-trihydroxystigmastan-6-one (2), (22S,23S)-5alpha-fluoro-3beta-22,23-trihydroxystigmastan-6-one (3), (22S,23S)-3beta,5alpha,22,23-tetrahydroxy-stigmastan-6-one (4) as well as their antiherpetic activity both in a human conjunctive cell line (IOBA-NHC) and in the murine herpetic stromal keratitis (HSK) experimental model. All compounds prevented HSV-1 multiplication in NHC cells in a dose dependent manner when added after infection with no cytotoxicity. Administration of compounds 2, 3, and 4 to the eyes of mice at 1, 2, and 3 days post-infection delayed and reduced the incidence of HSK, consisting mainly of inflammation, vascularization, and necrosis, compared to untreated, infected mice. However, viral titers of eye washes showed no differences among samples from treated and untreated mice. Since the decrease in the percentage of mice with ocular lesions occurred 5 days after treatment had ended, we suggest that brassinosteroids 2, 3, and 4 did not exert a direct antiviral effect in vivo, but rather may play a role in immune-mediated stromal inflammation, which would explain the improvement of the clinical signs of HSK observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号