首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were conducted to assess nutrient partitioning in coffee (Coffea arabica cv. Typica land race Guatemala) infected with Meloidogyne konaensis. Nutrient levels were quantified from soil, roots, and leaves. In the first experiment, 500-cm3 aliquants of a Kealakekua Andisol were infested with four initial population densities of M. konaensis ranging from 0 to 1,500 freshly hatched second-stage juveniles. Coffee plants (~3 months old) were transplanted into the soil and grown for 25 weeks. Plants responded to nematode infection with decreases (P < 0.05) in concentrations of Ca, Mg, P, and B and increases (P < 0.05) in concentrations of Mn, Cu, Zn, and Ca/B in the roots. Mn and Cu uptake by roots was decreased (P < 0.05) by nematode infection even though concentrations of Mn and Cu increased (P < 0.05) in the roots. Concentrations of Ca and Mg also decreased (P < 0.05) in the leaves, whereas the concentration of Zn increased (P < 0.05). In the second experiment, the soil was amended with Zn at 0 or 5 mg/kg soil and infested with M. konaensis at 0, 100, 1,000 or 10,000 eggs/1,200 cm3 soil. Three-month-old coffee seedlings of similar height were weighed and transplanted into pots and then placed in a greenhouse and grown under 50% shade for 23 weeks. Concentrations of P, K, Ca, Mg, Mn, B, and Zn increased in roots of nematode-free plants growing in Zn-amended soil. The beneficial effects due to the Zn amendment were not apparent in nematode-infected plants. Mn, B, and Zn uptake by coffee roots and P and B concentrations in coffee leaves responded similarly. Management of M. konaensis is necessary to achieve optimal nutrient management in coffee.  相似文献   

2.
A greenhouse experiment was performed to evaluate the effect of Norway spruce (Picea abies (L.) Karst.) seedlings on net nutrient availability in five different growing media containing F- or H-layer and mineral soil originating from a haplic podzol in northern Sweden. The initial total amounts of eight nutrient elements (N, K, P, Ca, Mg, Mn, Fe, Zn) and exchangeable amounts of the same elements were analyzed in pots with or without spruce seedlings. In the planted pots seedling nutrient uptake was also estimated. After 26 weeks, higher net nutrient availability with seedlings was found in 25 out of the 40 (62%) growing media and nutrient element combinations. A positive seedling effect on net nutrient availability might be explained by rhizodeposition stimulating the soil microorganism activity and accelerating the weathering of minerals or by seedling roots promoting the nutrient providing processes through changes in soil chemical and physical properties. Nitrogen availability was primarily affected by what part of the forest floor the growing medium contained although the positive response to seedling presence was apparent. The positive net availability response of P, Ca, Mg, Mn, Fe and Zn to seedling presence was on the other hand relatively strong. In the case of P, K, and Zn the growing medium composition (if the F- and H-layer was pure or mixed with mineral soil) was also an important factor for the estimated net availability. Pure F-and H-layer provided greater P- and K-availability while the availability of Zn increased when mineral soil was added. The influence of growing plants ought to be considered when soil samples are used for assessing the nutrient availability.  相似文献   

3.
Silber  A.  Yones  L. Ben  Dori  I. 《Plant and Soil》2004,262(1-2):205-213
The effect of modification of the rhizosphere pH, via solution-N concentration and source, on rice flower (Ozothamnus diosmifolius, Astraceae) growth was investigated in two different experiments. In order to simulate a wide range of pHs easily, the plants were grown in an inert artificial substrate (perlite). In the first the rhizosphere pH was modified through variation of N concentrations and the NH4/NO3-N ratio in the irrigation water. In the second the rhizosphere pH was modified solely by altering the NH4/NO3-N ratio while irrigation-N concentration was held at the level found to be optimal in the first experiment. Cultivation of rice flower, a new crop in Israel, is hampered by lack of knowledge on its Zn nutrition. Because availability of soil Zn largely depends on pH we investigated in the second experiment the effect of Zn foliar application. The growth of rice flower plants under low-N fertilization or low NH4/NO3-N ratio was poor and the plants exhibited growth disorders such as tipburn, severe chlorosis and necrosis. These growth disorders could not be ascribed to any direct effect of N nutrition therefore it was suggested that the indirect effect of the treatments, e.g., the rhizosphere pH dominates rice flower growth through its effect on nutrient availability. The only nutrient that was significantly correlated with pH and yield parameters in both experiments was Zn. All irrigation-nutrients concentrations were within the recommended range for hydroponically grown plants; however, the leaf-Mn concentration of plants grown in pH above 7.5 was in the toxic range while that of Zn was deficient. The high preferential uptake of Mn over Zn by rice flower plants and the question of whether high Mn uptake induced Zn deficiency remain open.  相似文献   

4.
Transgenic Bt (expressing the cry1Ac endotoxin gene) and conventional oilseed rape plants grown in different soils were used to study nutrient uptake and emission of volatiles after herbivore damage. All plants were greenhouse-grown in soils representing low-, medium- and high-nutrient levels. The concentrations of N, P, K, Mg and Zn were significantly affected by the transgene, while the main effect of soil type appeared in N, P, Ca, Mg, B, Mn and Zn concentrations in the plants. Plants with four to five leaves were infested with the third instar larvae of Bt-susceptible Plutella xylostella for 48 h, and samples of volatiles were collected and analysed. In the first experiment, the soil nutrient level had a significant effect on the emissions of (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate, hexyl acetate, (E)-4,8-dimethyl-1,3,7-non-atriene (DMNT), beta-elemene, gamma-bisabolene, alpha-bisabolene and (E)-nerolidol. The induction of these volatiles was significantly higher in infested conventional plants grown at a high-soil nutrient level compared to infested conventional plants at a low-soil nutrient level. In the second experiment, the soil nutrient level had a significant effect on the emissions of (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate and beta-elemene and, again, this was significantly higher in infested conventional plants grown at high-soil nutrient levels in comparison with infested plants at a low-soil nutrient level. In both experiments, the transgene effect was significant on the emissions of DMNT and (E,E)-alpha-farnesene. The differences in emissions between the two separate experiments suggest that growth conditions (particularly daylength) and sampling procedure may affect the ratio of compounds detected in the emission blend, even though the response to herbivory, nutrient availability and the transgene were similar.  相似文献   

5.
An experiment to study the effects of Mg nutrition on root and shoot development of the Al-sensitive sorghum (Sorghum bicolor (L.) Moench) genotype CV323 grown in pots of sandy loam under different acid soil stress is reported. This experiment had a factorial design: four rates of liming were combined with four rates of Mg fertilization. When no Mg was added, the pH of the soil solutions (collected in ceramic cups) increased from 4.0 (unlimed) to 4.2, 4.7 and 5.9 at the increasing rates of liming. After 30 days of growth dry matter yields of the limed treatments were 40%, 115% and 199% higher than that of the unlimed treatment. Without liming and at the highest liming rate, adding Mg did not affect plant biomass significantly. At the two intermediate levels of liming, however, 11.3 mg extra Mg per kg soil increased dry matter yield to the same levels as found at the highest liming rate. Concentrations of Mg in the soil solution rose after Mg was added and fell when lime was added, but adding both Mg and lime increased Mg concentrations in the plant shoots. In plants of the limed treatments, dry matter yield was correlated closely with the Mg concentration in the shoot. This was not so in the unlimed treatment. Furthermore, in the unlimed treatments root development was inhibited, but reduced Mg uptake by the plants resulted mainly from the direct effect of Al- (or H-) ions in the soil solution rather than from impaired root development. It is concluded that Mg fertilization counteracted the interfering effects of Al- and H ions on Mg uptake.  相似文献   

6.
Abstract

Chemical fractions of soil Zn namely: water soluble (WS), exchangeable (EX), Pb displaceable (Pb-disp.), acid soluble (AS), Mn oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline Fe oxide occluded (CFeOX), residual (RES) were determined in 20 surface (0–15 cm) samples of acidic soils from the provinces of Uttarakhand and Uttar Pradesh, India. The chemical fractions of soil Zn in acidic soils were found to be in the following descending order of Zn concentration: RES > CFeOX > Pb-Disp. > AFeOX > MnOX > AS > OB > EX > WS. These soil samples were also extracted by: DTPA (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich 3 (pH 2.0), Modified Olsen, 0.01 N CaCl2, 1 M MgCl 2 and ion exchange resins. Chemical fractions and the soil extractable content of Zn estimated by different soil extractants were significantly correlated with some general soil properties. Maize (cv. Pragati) plants were grown in these soils for 35 days after emergence and Zn uptake by plants was compared with the amount of Zn extracted by different soil extractants and chemical fractions of Zn. Among chemical fractions of soil Zn, Pb-displaceable and acid soluble chemical fractions of soil Zn showed a significant and positive correlation with Zn uptake by maize. Path coefficient analysis also revealed that the acid soluble Zn fraction showed the highest positive and direct effect on Zn uptake (P=0.960). Among different multinutrient soil extractants evaluated for their suitability to assess Zn availability in acidic soils, DTPA (pH=5.3) was most suitable soil extractant, as the quantity of soil Zn extracted by this extractant showed a significant and positive correlation with the dry matter yield, Zn concentration and uptake by maize plants.  相似文献   

7.
Rhizosphere microbes may enhance nutrient uptake by plants. Here we studied the effect of Trichoderma asperellum inoculation on the uptake of Fe, Cu, Mn, and Zn by wheat (Triticum aestivum L) grown in a calcareous medium. To this end, an experiment involving two factors, namely Fe enrichment (ferrihydrite enrichment and non-enrichment of the growing medium), and inoculation/non-inoculation with Trichoderma asperellum strain T34, was performed twice under the same conditions. The increase in Fe availability as a result of ferrihydrite enrichment did not enhance plant dry matter production. The effect of T34 on the concentration of Fe, Cu, Mn and Zn, and the total amount of Cu, Mn, and Zn in the aerial parts differed depending on the degree of ferrihydrite enrichment. Inoculation with T34 increased Fe concentration in Fe-deficient media, thus revealing a positive effect of this microorganism on Fe nutrition in wheat. However, T34 significantly decreased the concentration and total amount of Cu, Mn, and Zn in the aerial parts, but only in ferrihydrite-enriched medium. This adverse effect of T34 on Cu, Mn, and Zn uptake by wheat plants may have been related to conditions of restricted availability where potential competition for nutrients between microorganisms and plants can be more marked.  相似文献   

8.
Soil fertility and leaching losses of nutrients were compared between a Fimic Anthrosol and a Xanthic Ferralsol from Central Amazônia. The Anthrosol was a relict soil from pre-Columbian settlements with high organic C containing large proportions of black carbon. It was further tested whether charcoal additions among other organic and inorganic applications could produce similarly fertile soils as these archaeological Anthrosols. In the first experiment, cowpea (Vigna unguiculata (L.) Walp.) was planted in pots, while in the second experiment lysimeters were used to quantify water and nutrient leaching from soil cropped to rice (Oryza sativa L.). The Anthrosol showed significantly higher P, Ca, Mn, and Zn availability than the Ferralsol increasing biomass production of both cowpea and rice by 38–45% without fertilization (P<0.05). The soil N contents were also higher in the Anthrosol but the wide C-to-N ratios due to high soil C contents led to immobilization of N. Despite the generally high nutrient availability, nutrient leaching was minimal in the Anthrosol, providing an explanation for their sustainable fertility. However, when inorganic nutrients were applied to the Anthrosol, nutrient leaching exceeded the one found in the fertilized Ferralsol. Charcoal additions significantly increased plant growth and nutrition. While N availability in the Ferralsol decreased similar to the Anthrosol, uptake of P, K, Ca, Zn, and Cu by the plants increased with higher charcoal additions. Leaching of applied fertilizer N was significantly reduced by charcoal, and Ca and Mg leaching was delayed. In both the Ferralsol with added charcoal and the Anthrosol, nutrient availability was elevated with the exception of N while nutrient leaching was comparatively low.  相似文献   

9.
Nutrient management recommendations for fruit crops lack the understanding of the efficiency of soil fertilisation with manganese (Mn) and zinc (Zn), which could substitute, in part, the traditional foliar applications. Fruit yield of trees in response to Zn and Mn supply via soil may be limited either by sorption reactions with soil colloids or low solubility of fertilisers. We investigated the effects of fertiliser sources and rates of Mn and Zn applied to soils with different sorption capacities on nutrient uptake, biochemical responses and biomass of Citrus. Two experiments were carried out with 2‐year‐old sweet orange trees that received applications of Mn or Zn. The first experiment evaluated the application of Mn fertilisers (MnCO3 and MnSO4) at three levels of the nutrient (0, 0.7 and 3.5 g plant?1 of Mn) in two types of soil (18.1% and 64.4% of clay, referred to as sandy loam and clay soils, respectively). The second experiment, likewise, evaluated Zn fertilisers (ZnO and ZnSO4) and nutrient levels (0, 1.0 and 5.0 g plant?1 of Zn). Application of Mn and Zn increased nutrient availability in the soils as well as leaf nutrient concentrations in the trees. The lowest rates, 0.7 g plant?1 of Mn and 1.0 g plant?1 of Zn, both as sulphate, were sufficient to supply these micronutrients to sufficient levels in leaves, flowers and fruits. Metal toxicity to plants occurred with higher doses of both nutrients and to a large extent in the sandy soil. In this case, protein bands lower than 25 kDa were observed as well a decrease on leaf chlorophyll content. In the clay soil, despite increased micronutrient concentrations in the plant, responses were less pronounced because of higher adsorption of metals in the soil. Superoxide dismutase (SOD, EC 1.15.1.1) isoenzyme activity was determined by non‐denaturing polyacrylamide gel electrophoresis (PAGE). The Cu/Zn‐SOD isoenzymes increased with increased Zn rates, but in contrast, when Mn was applied at the highest rate, the activity of Cu/Zn‐SODs decreased. The SOD activity pattern observed indicated increased production of superoxide and consequently an oxidative stress condition at the highest rates of Zn and Mn applied. The results demonstrated that the soil application of Mn and Zn can supply nutrient demands of orange trees, however the low solubility of fertilisers and the high sorption capacity of soils limit fertilisation efficiency. On the contrary, application of sulphate source in sandy soils may cause excess uptake of Mn and Zn and oxidative stress, which impairs the photosynthetic apparatus and consequently tree growth.  相似文献   

10.
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop of the world. In South America, it is grown mainly on acid soils, and its production on these soils is limited by deficient levels of available P, Ca, Mg, and micronutrients, and toxic levels of Al and Mn. A greenhouse experiment was undertaken to evaluate the genotypic differences in sorghum for uptake (U), inhibition (IH), influx (IN) into roots, and transport (TR) to shoot for nutrients at three levels of soil Al saturation (2, 41, 64%). Overall shoot nutrient U, IN, and TR showed a significant inverse correlation with soil Al saturation and shoot Al concentration, and a significant positive correlation with shoot and root dry weight. The nutrient uptake parameters differentiated genotypes into most and least efficient categories at various levels of soil Al saturation. The nutrient uptake parameters showed significant differences with respect to soil Al saturation, genotypes, and their interactions. In the current study, Al tolerant genotypes recorded higher IN and TR for P, K, Ca, Mg, Zn, and Fe than Al-sensitive genotypes. Therefore, these U, IN, and TR traits could be used in selection of sorghum plants adaptable to acid soils. Sorghum genotypes used in this study showed intraspecific genetic diversity in U, IN, and TR for essential nutrients. It was concluded that selection of acid soil tolerant genotypes and further breeding of acid (Al) tolerant sorghum cultivars are feasible.IICA/EMBRAPA/World BankIICA/EMBRAPA/World BankIICA/EMBRAPA/World Bank  相似文献   

11.
Forage barley dry matter yield and quality, as well as soil pH, Al, and Mn were monitored in response to P, K, and lime application on a newly cleared Typic Cryorthod (Orthid Podzol). The overall yearly yield level was affected by precipitation. Without liming soil acidification occurred after three years of production. The liming rate of 2.2 Mg.ha−1 was found optimal for maintaining initial pH levels (5.66) and increasing forage barley yields. It was also found optimum for K and P utilization for these first years of production. Soil pH dropped an average of 0.33 units over the three years on unlimed P plots and 0.46 units over 4 years on K plots. Phosphorus and K fertilization increased N utilization and resulted in decreased soil acidification. Phosphorus availability was greater in the first year of cropping than in subsequent years, this was likely due to the effects of higher available moisture, liming release of native P, and effects of initial fertilization. There was a 148% increase in total dry matter yield and an 85% increase in protein yield of forage barley with P application. Liming increased total forage barley yields an average of 69% and total protein yields 48%. Reduced barley yields in unlimed plots were due to low soil pH. After two years of cultivation, unlimed plots contained exchangeable Al and soluble Mn levels reported toxic for other soils. The higher liming rates of 4.4 and 6.6 Mg.ha−1 reduced soluble Mn to near critically low levels. soil Al and Mn were highly correlated to pH. Soil exchangeable Al, Mn, and soluble Mn along with tissue Al were inversely correlated to percentage yield. The average yield respone to three levels of applied K, increased from zero initially to 67% by the fourth year. Total dry-matter production increased 32% and total protein yield increased an average of 32% and total protein yield increased an average of 15% with K fertilization over four years. About 60% of the yield response occurred between the 0 and 22kg K.ha−1 rates. Initial soil exchangeable K levels were not maintained even at the highest 66kg K.ha−1 treatment. Soil exchangeable Al and soluble Mn were elevated with dropping pH. Soil K reserves and resupply of exchangeable K in these soils over the long term will be an important factor in crop production.  相似文献   

12.
R. B. Clark 《Plant and Soil》1977,47(3):653-662
Summary Growth and P, K, Ca, Mg, Mn, Zn, Fe, and Cu concentrations and contents were determined in Al-tolerant and Al-intolerant corn (Zea mays L.) inbreds when grown at various levels of Al. B57 was more tolerant to Al than was Oh40B. Relatively low Al levels (up to 5 mg/l) enhanced B57 growth but inhibited Oh40B growth. With few exceptions, Oh40B root and leaf concentrations of the elements decreased with added Al. The decreases in element concentrations were not as large for B57 as they were for Oh40B. The Mg concentrations and contents decreased more than the other elements in all inbreds with added Al. Root Mg decreased more than leaf Mg. Total uptake of some elements were higher at low Al than with no Al. Inasmuch as Mg has a pronounced effect on root growth, low Mg may be an important response in plants sensitive to Al.Journal article No. 82-75 of Department of Agronomy, Ohio Agricultural Research and Development Center, Wooster, Ohio.Journal article No. 82-75 of Department of Agronomy, Ohio Agricultural Research and Development Center, Wooster, Ohio.  相似文献   

13.
Summary Levels of extractable micronutrients in a peat and the growth and nutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L cv. Blueray) were studied in a greenhouse experiment in response to liming and two rates of addition of Fe, Mn, Zn and Cu.Levels of extractable micronutrients showed different trends with liming depending upon the extractant used and the element being considered. Levels of 0.05M CaCl2-extractable Fe, Mn and Zn decreased as the pH was raised whilst those of Cu first decreased and then increased again. There was a general decline in 0.1M HCl-extractable Fe, Mn and Cu with increasing pH but levels of Zn were not greatly affected. Levels of 0.005M DTPA extractable Fe, Mn Zn and Cu generally declined but those extractable with 0.04M EDTA were either unaffected or increased as the pH was raised. Levels of CaCl2-extractable Mn and Zn were the same order of magnitude as those extractable with HCl, DTPA and EDTA. In contrast, the latter reagents extracted considerably more Fe and Cu than did CaCl2.Dry matter yields of plants were increased as the pH was raised from 3.9 to 4.3 but then decreased markedly as the pH was raised further to 6.7. With increasing pH, concentrations of plant Fe generally increased those of Mn were decreased and those of Zn and Cu were not greatly affected except for a marked decline in plant Cu at pH 6.7.  相似文献   

14.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

15.
Grazing is a traditional grassland management technique and greatly alters ecosystem nutrient cycling. The effects of grazing intensity on the nutrient dynamics of soil and plants in grassland ecosystems remain uncertain, especially among microelements. A 2‐year field grazing experiment was conducted in a typical grassland with four grazing intensities (ungrazed control, light, moderate, and heavy grazing) in Inner Mongolia, China. Nutrient concentration was assessed in soil and three dominant plant species (Stipa krylovii, Leymus chinensis, and Cleistogenes squarrosa). Assessed quantities included four macroelements (carbon (C), nitrogen (N), phosphorus (P), and magnesium (Mg)) and four microelements (copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)). Soil total C, total N, total P, available N, and available P concentrations significantly increased with grazing intensity but soil Mg, Cu, Fe, Mn, Zn concentrations had no significant response. Plant C concentration decreased but plant N, P, Mg, Cu, Fe, Mn, and Zn concentrations significantly increased with grazing intensity. In soil, macroelement dynamics (i.e., C, N, and P) exhibited higher sensitivity with grazing intensity, conversely in plants, microelements were more sensitive. This result indicates macroelements and microelements in soil and plants had asymmetric responses with grazing intensity. The slopes of nutrient linear regression in C. squarrosa were higher than that of S. krylovii and L. chinensis, indicating that C. squarrosa had higher nutrient acquisition capacity and responded more rapidly to heavy grazing. These findings indicate that short‐term heavy grazing accelerates nutrient cycling of the soil–plant system in grassland ecosystems, elucidate the multiple nutrient dynamics of soil and plants with grazing intensity, and emphasize the important function of microelements in plant adaptation in grazing management.  相似文献   

16.
 本文用盆钵试验研究京郊石灰性草甸土冬小麦养分生物循环的结果表明:小麦对不同养分吸收、携出和归还数量的差异很大。根据随籽粒携出和以根茬归还的比例特点,可将养分划分为三种类型:1)低归还高携出型(N、P、K);2)低携出高归还型(Ca、Fe);3)中归还中携出型(Mg、Mn、Cu、Zn)。施锰增加植株对氮和锰的吸收及钾和锰随籽粒的携出;施锌则降低植株对锰的吸收和随籽粒携出的钾、钙、镁、铁、锰量。锰肥和锌肥有拮抗作用。  相似文献   

17.
Summary A glasshouse experiment was conducted to determine how reduction conditions would affect plant nutrient availability and uptake in a red-yellow latosol (Acrustox). Soil analysis showed that the most important changes were a marked increase in extractable iron and an inhibition of nitrification. The grass andropogon (Andropogon gayanus Kunth var.bisquamulatus (Hoechst) Hack) and the legume stylo (Stylosanthes capitata (Vog)) responded differently to reducing conditions.Andropogon showed low P, Ca, Mg, Fe and Mn content in the shoots but an intense coating of oxidized iron was observed on the surface of roots. Stylo plants, on the other hand, showed no iron deposition on the root surfaces but a high iron content in the shoots. No decreased P, Ca or Mg content was observed in this case. It was concluded that in water saturated soil, reduction took place and plant performance was affected not only by restricted root development but by preventing P, Ca and Mg uptake in andropogon and increasing Fe uptake in stylo plants. It is suggested that restricted P, Ca and Mg uptake by andropogen would be the result of iron deposition on root surfaces.  相似文献   

18.
Sustainability of soil-plant systems requires, among other things, good development and function of mycorrhizal symbioses. The effects of P and micronutrient levels on development of an arbuscular mycorrhizal fungus (AMF) and uptake of Zn, Cu, Mn and Fe by maize (Zea mays L.) were studied. A pot experiment with maize either inoculated or not with Glomus intraradices was conducted in a sand:soil (3 :1) mix (pH 6.5) in a greenhouse. Our goal was to evaluate the contribution of mycorrhizae to uptake of Cu, Zn, Mn and Fe by maize as influenced by soil P and micronutrient levels. Two levels of P (10 and 40 mg kg−1 soil) and three levels of a micronutrient mixture: 0, 1X and 2X (1X contained, in mg kg−1 soil, 4.2 Fe, 1.2 Mn, 0.24 Zn, 0.06 Cu, 0.78 B and 0.036 Mo), were applied to pots. There were more extraradical hyphae at the low P level than at the high P level when no micronutrients were added to the soil. Root inoculation with mycorrhiza and application of micronutrients increased shoot biomass. Total Zn content in shoots was higher in mycorrhizal than non-mycorrhizal plants grown in soils with low P and low or no micronutrient addition. Total Cu content in shoots was increased by mycorrhizal colonization when no micronutrients were added. Mycorrhizal plants had lower Mn contents than non-mycorrhizal plants only at the highest soil micronutrient level. AMF increased total shoot Fe content when no micronutrients were added, but decreased shoot Fe when plants were grown at the high level of micronutrient addition. The effects of G. intraradices on Zn, Cu, Mn, and Fe uptake varied with micronutrient and P levels added to soil. Accepted: 27 December 1999  相似文献   

19.
Summary Chrysanthemum morifolium Ramat. plants were grown in a soil mix fertilized daily with a balanced solution containing N, P, K, Ca, and Mg at 4 rates which were 0.5, 1, 2, and 4 times. At the end of 4 weeks of vegetative growth, the above-ground portions of the plants were analyzed for elemental content, and the soil mix was analyzed by 3 soil testing procedures. The N, P, and K contents of chrysanthemum were positively correlated with the reported values of these nutrients in the soil as determined by the Spurway, Penn State, and Intensity-Balance soil tests. Magnesium, as in the Penn State and Intensity-Balance soil tests, was negatively correlated with plant Mg content; however, Ca was not significantly correlated with plant Ca in the Penn State test and negatively correlated in the Intensity-Balance test. The magnitude of the correlation coefficients between nutrient content of the plants, and the soil test value of the nutrient by all three soil tests were similar indicating that all three soil tests can be used.Paper No. 5686 in the Journal Series of the Pennsylvania Agricultural Experiment Station.  相似文献   

20.
Iwan Ho 《Plant and Soil》1988,109(2):291-293
Amounts of N, P, K, Ca, Mg, Zn, Fe, and Mn absorbed by a nodulating and a non-nodulating (Non-nod) peanut genotype at two nitrogen fertilizer levels (nil and 200 kg N ha–1) were determined in a field experiment. The amounts of nutrient elements in the plant parts were greatest for N, followed by K, Ca, Mg, P, Fe, Mn, and Zn in descending order. Although there were differences in the uptake of other nutrients, the major difference between Non-nod and nodulating genotypes was in nitrogen indicating the poor yield of the Non-nod line due to its inability to acquire N.Submitted as Journal Article No: 677 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号