首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The ERKs are a subfamily of the MAPKs that have been implicated in cell growth and differentiation. By using the rat ERK7 cDNA to screen a human multiple tissue cDNA library, we identified a new member of the ERK family, ERK8, that shares 69% amino acid sequence identity with ERK7. Northern analysis demonstrates that ERK8 is present in a number of tissues with maximal expression in the lung and kidney. Fluorescence in situ hybridization localized the ERK8 gene to chromosome 8, band q24.3. Expression of ERK8 in COS cells and bacteria indicates that, in contrast to constitutively active ERK7, ERK8 has minimal basal kinase activity and a unique substrate profile. ERK8, which contains two SH3-binding motifs in its C-terminal region, associates with the c-Src SH3 domain in vitro and co-immunoprecipitates with c-Src in vivo. Co-transfection with either v-Src or a constitutively active c-Src increases ERK8 activation indicating that ERK8 can be activated downstream of c-Src. ERK8 is also activated following serum stimulation, and the extent of this activation is reduced by pretreatment with the specific Src family inhibitor PP2. The ERK8 activation by serum or Src was not affected by the MEK inhibitor U0126 indicating that activation of ERK8 does not require MEK1, MEK2, or MEK5. Although most closely related to ERK7, the relatively low sequence identity, minimal basal activity, and different substrate profile identify ERK8 as a distinct member of the MAPK family that is activated by an Src-dependent signaling pathway.  相似文献   

4.
A human T cell-specific molecule is a member of a new gene family   总被引:40,自引:0,他引:40  
We have used a cDNA library enriched for T cell-specific sequences to isolate genes expressed by T cells but not by other cell types. We report here one such gene, designated RANTES, which encodes a novel T cell-specific molecule. The RANTES gene product is predicted to be 10 kDa and, after cleavage of the signal peptide, approximately 8 kDa. Of the 68 residues, 4 are cysteines, and there are no sites for N-linked glycosylation. RANTES is expressed by cultured T cell lines that are Ag specific and growth factor dependent. RANTES expression is inducible in PBL by Ag or mitogen. In CTL, expression of RANTES decreases after stimulation with Ag and growth factors. Interestingly, RANTES was not expressed by any T cell tumor line tested. There is significant homology between the RANTES sequence and several other T cell genes, suggesting that they comprise a previously undescribed family of small T cell molecules.  相似文献   

5.
6.
Cellular retinol-binding protein, type I (CRBP-I) and type II (CRBP-II) are the only members of the fatty acid-binding protein (FABP) family that process intracellular retinol. Heart and skeletal muscle take up postprandial retinol but express little or no CRBP-I or CRBP-II. We have identified an intracellular retinol-binding protein in these tissues. The 134-amino acid protein is encoded by a cDNA that is expressed primarily in heart, muscle and adipose tissue. It shares 57 and 56% sequence identity with CRBP-I and CRBP-II, respectively, but less than 40% with other members of the FABP family. In situ hybridization demonstrates that the protein is expressed at least as early as day 10 in developing heart and muscle tissue of the embryonic mouse. Fluorescence titrations of purified recombinant protein with retinol isomers indicates binding to all-trans-, 13-cis-, and 9-cis-retinol, with respective K(d) values of 109, 83, and 130 nm. Retinoic acids (all-trans-, 13-cis-, and 9-cis-), retinals (all-trans-, 13-cis-, and 9-cis-), fatty acids (laurate, myristate, palmitate, oleate, linoleate, arachidonate, and docosahexanoate), or fatty alcohols (palmityl, petrosenlinyl, and ricinolenyl) fail to bind. The distinct tissue expression pattern and binding specificity suggest that we have identified a novel FABP family member, cellular retinol-binding protein, type III.  相似文献   

7.
Oxidative damage represents a major threat to genomic stability, as the major product of DNA oxidation, 8-oxoguanine (GO), frequently mispairs with adenine during replication. In order to prevent these mutagenic events, organisms have evolved GO-DNA glycosylases that remove this oxidized base from DNA. We were interested to find out how GO is processed in the hyperthermophilic archaeon Pyrobaculum aerophilum, which lives at temperatures around 100°C. To this end, we searched its genome for open reading frames (ORFs) bearing the principal hallmark of GO-DNA glycosylases: a helix–hairpin–helix motif and a glycine/proline-rich sequence followed by an absolutely conserved aspartate (HhH-GPD motif). Interestingly, although the P.aerophilum genome encodes three such ORFs, none of these encodes the potent GO-processing activity detected in P.aerophilum extracts. Fractionation of the extracts, followed by analysis of the active fractions by denaturing polyacrylamide gel electrophoresis, showed that the GO-processing enzyme has a molecular size of ~30 kDa. Mass spectrometric analysis of proteins in this size range identified several peptides originating from P.aerophilum ORF PAE2237. We now show that PAE2237 encodes AGOG (Archaeal GO-Glycosylase), the founding member of a new family of DNA glycosylases, which can remove GO from single- and double-stranded substrates with great efficiency.  相似文献   

8.
9.
10.
11.
12.
The TNF family is involved in the regulation of the immune system, and its members have been implicated in a variety of biological events such as apoptosis, cell proliferation, differentiation and survival. Here we present a new member of the TNF family, tumor necrosis factor superfamily member 20 (TNFSF20) that we have identified from the expressed sequence tag (EST) database and characterized. The human protein is a 285 amino acid long type II transmembrane protein and is 19% homologous to TNF in its extra-cellular domain. TNFSF20 is expressed at the surface of antigen presenting cells such as cells of the macrophagemonocyte lineage and dendritic cells. After treatment with bacterial lipopolysaccharide (LPS), TNFSF20 expression is downregulated at the surface of the expresssing cells, suggesting that the membrane-bound protein gets cleaved, and that a soluble factor is released in the extra-cellular compartment. The soluble form of the recombinant TNFSF20 induces proliferation of resting peripheral blood monocytes (PBMC) and cell death of activated lymphocytes. TNFSF20 might therefore play a critical role in the regulation of cell-mediated immune responses.  相似文献   

13.
We previously demonstrated that encephalitogenic CD4+ T lymphocytes from the long-term cultured line S1, specific for myelin basic protein, induce a CD8+ T cell population in vivo that protects naive Lewis rats against experimental autoimmune encephalomyelitis caused by S1 cells. In order to determine the contribution of individual T cell population in the development of induced resistance, we have analyzed the in vitro proliferative capacity of phenotypically distinct T cell populations isolated from S1-immunized rats. We found that both CD8+ and CD8-CD4- T cells show striking proliferative responses when stimulated with S1 cells, whereas CD4+ T cells show only minimal responses. In addition, a significant proportion of the CD8-CD4- cells, after stimulated by S1 cells, became CD8+ and had a strong cytolytic activity toward S1 cells. These results suggest a contribution of double-negative splenic T cells in the regulatory circuit associated with autoimmune encephalomyelitis.  相似文献   

14.
A TNF family member LIGHT transduces costimulatory signals into human T cells   总被引:11,自引:0,他引:11  
DcR3/TR6 is a secreted protein belonging to the TNFR family. It binds to Fas ligand, LIGHT, and TL1A, all of which are TNF family members. LIGHT is expressed on activated T cells. Its known receptors are TR2 and LTbetaR on the cell surface, and TR6 in solution. In the present study, we report soluble TR6-Fc or solid-phase TR6-Fc costimulated proliferation, lymphokine production, and cytotoxicity of human T cells in the presence of TCR ligation. These costimulating effects were blocked by soluble LIGHT but not by soluble Fas-Fc. TR6-Fc could also effectively costimulate gld/gld mouse T cells. We further demonstrated that TR6 bound to both Th1 and Th2 cells, according to flow cytometry, and that the association was inhibited by soluble LIGHT. Cross-linking Th1 and Th2 cells with solid-phase TR6-Fc along with a suboptimal concentration of anti-CD3 enhanced proliferation of both Th1 and Th2 cells, and augmented Th1 but not Th2 lymphokine production. These data suggest that TR6 delivers costimulation through its ligand(s) on the T cell surface, and at least the major part of such costimulation is via LIGHT.  相似文献   

15.
16.
Viral load and CD4 T-cell counts in patients infected with the human immunodeficiency virus (HIV) are commonly used to guide clinical decisions regarding drug therapy or to assess therapeutic outcomes in clinical trials. However, random fluctuations in these markers of infection can obscure clinically significant change. We employ a Monte Carlo simulation to investigate contributing factors in the expected variability in CD4 T-cell count and viral load due solely to the stochastic nature of HIV infection. The simulation includes processes that contribute to the variability in HIV infection including CD4 and CD8 T-cell population dynamics as well as T-cell activation and proliferation. The simulation results may reconcile the wide range of variabilities in viral load observed in clinical studies, by quantifying correlations between viral load measurements taken days or weeks apart. The sensitivity of variability in T-cell count and viral load to changes in the lifetimes of CD4 and CD8 T-cells is investigated, as well as the effects of drug therapy.  相似文献   

17.
A new member of the insulin gene family (INSL6) was identified from an Expressed Sequence Tag database through a search for proteins containing the insulin family B-chain cysteine motif. Human and rat INSL6 encoded polypeptides of 213 and 188 amino acids, respectively. These orthologous sequences contained the B-chain, C-peptide, and A-chain motif found in other members of the insulin family. Human INSL6 was 43% identical to human relaxin H2 in the B- and A-chain regions. As with other family members, human and rat INSL6 had predicted dibasic sequences at the junction of the C-peptide and A-chain. Human INSL6 sequence had an additional dibasic site near the C-terminus of the A-chain. The presence of a single basic residue at the predicted junction of the B-chain and C-peptide suggests that multiple prohormone convertases are required to produce the fully mature hormone. INSL6 was found to be expressed at high levels in the testis as determined by Northern blot analysis and specifically within the seminiferous tubules in spermatocytes and round spermatids as detected by in situ hybridization analysis. Radiation hybrid mapping placed the human INSL6 locus at chromosome 9p24 near the placenta insulin-like homologue INSL4 and the autosomal testis-determining factor (TDFA) locus.  相似文献   

18.
A gene encoding the endogenous superantigen Mlsc, which deletes Tcrb-V3+ T cells in the NOD inbred mouse strain, was found to co-segregate with Mtv-3 on chromosome 11. This identifies a fourth gene encoding a deletion ligand for Tcrb-V3+ T cells and extends recently published observations in support of the hypothesis that a number of endogenous superantigens are the products of Mtv proviruses. Address correspondence and offprint requests to : K. Tomonari.  相似文献   

19.
The six minichromosome maintenance proteins (Mcm2–7) are required for both the initiation and elongation of chromosomal DNA, ensuring that DNA replication takes place once, and only once, during the S phase. Here we report on the cloning of a new human Mcm gene (hMcm8) and on characterisation of its protein product. The hMcm8 gene contains the central Mcm domain conserved in the Mcm2–7 gene family, and is expressed in a range of cell lines and human tissues. hMcm8 mRNA accumulates during G1/S phase, while hMcm8 protein is detectable throughout the cell cycle. Immunoprecipitation-based studies did not reveal any participation of hMcm8 in the Mcm3/5 and Mcm2/4/6/7 subcomplexes. hMcm8 localises to the nucleus, although it is devoid of a nuclear localisation signal, suggesting that it binds to a nuclear protein. In the nucleus, the hMcm8 structure-bound fraction is detectable in S, but not in G2/M, phase, as for hMcm3. However, unlike hMcm3, the hMcm8 structure-bound fraction is not detectable in G1 phase. Overall, our data identify a new Mcm protein, which does not form part of the Mcm2–7 complex and which is only structure-bound during S phase, thus suggesting its specific role in DNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号