首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nematostella vectensis is an infaunal anemone occurring in salt marshes, lagoons and other estuarine habitats in North America and the United Kingdom. Although it is considered rare and receives protection in England, it is widely distributed and abundant in the United States, particularly along the Atlantic coast. Recent studies suggest that both anthropogenic dispersal and reproductive plasticity may significantly influence the genetic structure of N. vectensis populations. Amplified fragment length polymorphism (AFLP) fingerprinting of individuals from nine populations in the northeastern United States indicates that stable populations are maintained by both asexual and sexual reproduction; in some cases asexually reproducing lineages exist within sexually reproducing populations. F statistics reveal extraordinarily high degrees of genetic differentiation between populations, even those separated by very short distances (less than 100 m). Genetic distances show little to no correlation with geographical distances, consistent with a role for sporadic, geographically discontinuous dispersal coupled with limited gene flow. No single genotype was found at more than one site, despite apparent homogeneity of habitat. In contrast with reported genotypic distributions for Nematostella in the United Kingdom, where a single clonal genotype dominates at multiple sites through southern England, our data thus fail to support the hypothesis of a general-purpose genotype in the northeastern United States. However, they are consistent with important roles for reproductive plasticity, sporadic introductions and complex local population dynamics in determining the global and regional distribution of this species.  相似文献   

2.
中国和美国大豆疫霉群体遗传结构的ISSR分析   总被引:12,自引:0,他引:12  
为探究中国和美国大豆疫霉的遗传关系, 采用简单序列重复区间扩增多态性(ISSR)技术, 对来自中国黑龙江省、福建省和美国的3个大豆疫霉地理群体的遗传多样性进行了分析。通过13个ISSR引物对供试的111株大豆疫霉菌株进行扩增, 共得到102个ISSR条带, 其中多态性条带为88个, 占86%。遗传变异分析表明, 美国群体具有更高的遗传变异度; Nei’s 遗传相似性和主成分分析均显示, 中国福建群体与美国群体间的遗传相似性最高, 而福建群体与黑龙江群体间遗传相似性最低; 聚类分析显示, 供试菌株在88%的相似性水平上可区分为7个聚类组, 且美国群体分布于更多的聚类组中; Shannon-Wiener多样性指数也表明美国群体的遗传多样性最为丰富。综合分析表明, 本研究的结果不支持关于美国的大豆疫霉可能来源于中国的推测。  相似文献   

3.
黑脚硬蜱 (Ixodesscapularis)是莱姆病的主要传毒媒介。本文利用从 12个不同地点采集的 85 3个样本 ,采用DNA单连构型多样性的分子技术 (DNAsinglestrandconformationpolymorphisms)对黑脚硬蜱的种群结构进行了分析。线粒体细胞色素b (Cytb)和核糖体rRNA基因的内部转录空间ITS1被用为种群目标分子标记位点。在Cytb位点上 ,总共发现 7个单倍基因型。在ITS1位点上 ,共发现 13个基因型。基因型频率分析结果显示 ,沿美国东海岸分布的黑脚硬蜱隶属于两个不同的南北种群 ,但是基因流在地理区域间频繁发生。尽管蜱自身的迁徙扩散能力有限 ,但地理区域内个体间的遗传变异程度仍然较大 ,这可能与黑脚硬蜱寄主动物的频繁迁移有关。另外 ,本研究资料显示 ,南方种群的遗传变异程度明显大于北方种群  相似文献   

4.
To test if the high nutrient inputs of agroeosystems select for specialized agroecotypes or for phenotypic plasticity, Ontario populations of the northwardly migrating annual weed Solanum ptycanthum from ruderal (beach) and agricultural habitats were compared over a nutrient gradient. Temporal variation of total available nitrogen was determined in both types of habitats. As gene flow via seed contamination of tomato transplants from S. United States was detected, variation in response to nutrient (N) levels was also compared between agrestal populations from the northern (Ontario) and southern (Georgia) ends of the species range. Five families from six populations (two northern agrestal, two northern ruderal and two southern agrestal) were grown in the greenhouse at low, medium and high nutrient levels, and plant growth and traits associated with reproductive success measured. All populations displayed significant levels of plasticity in the majority of vegetative and reproductive traits. There were no detectable differences over the levels of nutrients tested between individuals sampled from northern agrestal and ruderal populations, even though variation in available nitrogen is greater in agroecosystems. Southern agrestal populations were genetically differentiated from the northern populations, and exhibited almost twice the overall plasticity of northern populations, measured by the Mahalanobis distance. Canonical discriminant analysis showed complete overlap in the northern populations over all nutrient levels, suggesting that colonization of new habitats is via a general-purpose genotype, rather than by selection for specialized agroeotypes.  相似文献   

5.
American hart's-tongue fern (AHTF) is one of the rarest ferns in the United States and concern over its conservation and management has highlighted the need for genetic analysis. Genetic analysis also provides insights into the species' mating system which contributes to our understanding of its rarity and persistence. We analyzed 88 individuals from 11 populations in NY and MI based on variations in 108 loci as revealed through ISSR markers using Nei's gene diversity index, percent polymorphic loci and other measures. Low genetic diversity predominates in the populations from NY, and even lower for the populations in MI. Our results also indicate that AHTF from NY and MI are genetically differentiated from each other, as well as the populations within them. There is no positive correlation between genetic and geographic distances, as well as between genetic distance and census population size. The significantly high among population genetic variation and low gene flow value are common indicators of a predominant inbreeding mating strategy within populations, limited spore dispersal, and genetic drift. Our results also indicate that each AHTF population is an important contributor to the overall genetic variation of the species and thus, represents a significant unit for conservation efforts.  相似文献   

6.
The house finch (Carpodacus mexicanus) is a native songbird of western North America that was introduced to the eastern United States and Hawaiian Islands in historic times. As such, it provides an unusually good opportunity to test the ability of molecular markers to recover recent details of a known population history. To investigate this prospect, genetic variation in 172 individuals from 16 populations in the western and eastern United States, southeastern Canada, Hawaiian Islands, and Mexico, as well as genetic variation in the closely related purple finch (Carpodacus purpureus) and Cassin's finch (Carpodacus cassinii) was studied by a semi-automated fluorescence-labeled amplified fragment length polymorphism (AFLP) marker system. A total of 363 markers were generated, of which 258 (71.2%) were polymorphic among species, 166 (61.4%) polymorphic among house finch subspecies, and 157 (60.2%) polymorphic among populations within the frontalis subspecies complex. Heterozygosities and interpopulation divergences revealed by the analysis appeared relatively low at all taxonomic levels, but there are few similar studies in avian populations with which to compare results. Whereas the known population history predicts that both eastern and Hawaiian finches should have been derived from within western populations, tree analysis using both populations and individuals as units suggests weak monophyly of eastern populations and indicates that Hawaiian populations are not clearly derived from California populations. However, the genetic distinctiveness of native and recently founded populations was disclosed by analyses of molecular variance as well as by a model-based assignment approach in which 98%, 94%, and 99% individuals from western, Hawaiian, and eastern regions, respectively, were assigned correctly to their populations without using prior information on population of origin, suggesting that these recent introductions have resulted in detectable differentiation without substantial loss of AFLP diversity. Our results indicate that AFLPs are a useful tool for population genetic and evolutionary studies of birds, particularly as a prelude to finding molecular markers linked to traits subjected to recent adaptive evolution.  相似文献   

7.
Puccinellia pungens (Pau) Paunero is a narrowly endemic grass found in two continental saline lagoons of north-eastern Spain. This rare plant has been classified as 'at risk of extinction' in several national and European catalogues of endangered species. Recent demographic studies indicate that population sizes greatly exceed several million individuals, challenging that threat category. Our genetic analysis, based on allozymes, has shown that in spite of the large population sizes, very low levels of genetic variation were found in P. pungens . Genetic variation was similar in most populations, but the largest, Gallocanta lagoon as a whole, had less variation (35% polymorphic loci, 1.4 alleles/locus, H T = 0.038) than the more restricted Royuela range (45% polymorphic loci, 1.5 alleles/locus, H T = 0.056), suggesting a recent population expansion of the Gallocanta populations from few founder lines. The low genetic distances among populations also suggest a recent divergence. The low genetic variation observed cannot be explained fully by eventual clonal spread and rare seedling establishment in the hypersaline environment. This low variation seems to result from extreme recent population bottlenecks as a consequence of habitat conversion to agricultural fields. In the light of our data, it seems unlikely that reinforcement of populations could increase the genetic diversity of the populations. Hence, conservation efforts should focus on avoiding further habitat loss of this endangered steppe grass species.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 154 , 269–281.  相似文献   

8.
Blue catfish, Ictalurus furcatus, are valued in the United States as a trophy fishery for their capacity to reach large sizes, sometimes exceeding 45 kg. Additionally, blue catfish × channel catfish (I. punctatus) hybrid food fish production has recently increased the demand for blue catfish broodstock. However, there has been little study of the genetic impacts and interaction of farmed, introduced and stocked populations of blue catfish. We utilized genotyping‐by‐sequencing (GBS) to capture and genotype SNP markers on 190 individuals from five wild and domesticated populations (Mississippi River, Missouri, D&B, Rio Grande and Texas). Stringent filtering of SNP‐calling parameters resulted in 4275 SNP loci represented across all five populations. Population genetics and structure analyses revealed potential shared ancestry and admixture between populations. We utilized the Sequenom MassARRAY to validate two multiplex panels of SNPs selected from the GBS data. Selection criteria included SNPs shared between populations, SNPs specific to populations, number of reads per individual and number of individuals genotyped by GBS. Putative SNPs were validated in the discovery population and in two additional populations not used in the GBS analysis. A total of 64 SNPs were genotyped successfully in 191 individuals from nine populations. Our results should guide the development of highly informative, flexible genotyping multiplexes for blue catfish from the larger GBS SNP set as well as provide an example of a rapid, low‐cost approach to generate and genotype informative marker loci in aquatic species with minimal previous genetic information.  相似文献   

9.
The Atlantic sand fiddler crab Uca pugilator is an extremely abundant crab found along the eastern coast of the United States. Fiddler crabs have a life cycle with an obligatory planktonic larval phase of 30-90 days, which might be expected to lead to widespread larval dispersal and consequent genetic homogeneity over considerable distances. However, a large amount of morphological and behavioral variation is found between northern and southern populations along the eastern coast. This study was undertaken to determine the population genetic structure of U.pugilator and to determine whether these differences may have a genetic basis. The population structure of the fiddler crab was analyzed using 472 individuals collected from 12 sites along the eastern coast. PCR-based single stand conformation polymorphism (SSCP) was used to investigate between-site variation in the mitochondrial 16S rRNA gene of these individuals. Analysis of genetic variation indicated frequent gene flow between nearby localities, but much reduced levels between populations separated by larger geographic distances. Thus, despite the potential for high dispersal by planktonic larvae, population differentiation and isolation by distance is evident between northern and southern populations of U.pugilator. A high amount of genetic differentiation (FST=0.3468) was found between northern and southern regions suggesting that the morphological and behavioral differences between these two regions have a genetic basis and may represent subspecies [Current Zoology 55(2):150-157,2009].  相似文献   

10.

Premise

Phenological variation among individuals within populations is common and has a variety of ecological and evolutionary consequences, including forming the basis for population-level responses to environmental change. Although the timing of life-cycle events has genetic underpinnings, whether intraspecific variation in the duration of life-cycle events reflects genetic differences among individuals is poorly understood.

Methods

We used a common garden experiment with 10 genotypes of Salix hookeriana (coastal willow) from northern California, United States to investigate the extent to which genetic variation explains intraspecific variation in the timing and duration of multiple, sequential life-cycle events: flowering, leaf budbreak, leaf expansion, fruiting, and fall leaf coloration. We used seven clones of each genotype, for a total of 70 individual trees.

Results

Genotype affected each sequential life-cycle event independently and explained on average 62% of the variation in the timing and duration of vegetative and reproductive life-cycle events. All events were significantly heritable. A single genotype tended to be “early” or “late” across life-cycle events, but for event durations, there was no consistent response within genotypes.

Conclusions

This research demonstrates that genetic variation can be a major component underlying intraspecific variation in the timing and duration of life-cycle events. It is often assumed that the environment affects durations, but we show that genetic factors also play a role. Because the timing and duration of events are independent of one another, our results suggest that the effects of environmental change on one event will not necessarily cascade to subsequent events.  相似文献   

11.
Pennisetum setaceum (Poaceae) is a perennial bunch grass that invaded the United States during the 20th century and is highly invasive in Hawaii, moderately invasive in Arizona, and not yet invasive in southern California. Pennisetum setaceum is apomictic, a condition that is normally associated with low genetic variation within populations, but even moderate levels of genetic variation among populations could account for differences in invasiveness. To determine whether genetic factors are causing the variable invasion success, we used Inter‐Simple Sequence Repeat markers (ISSRs) to examine genetic variation in populations from the three areas. Screening of 16 primers revealed no genetic variation within any population or between any geographical areas, a pattern consistent with complete apomixis. Variation in invasion success appears unrelated to genetic differences among populations. Differences in the seasonal timing of rainfall among the regions may be the cause of variable invasiveness of fountain grass. Alternatively, differences in timing of introduction or duration of lag phase may have limited invasiveness in Arizona and southern California.  相似文献   

12.
The invasive annual Bromus tectorum (cheatgrass) is distributed in Canada primarily south of 52° N latitude in two diffuse ranges separated by the extensive coniferous forest in western Ontario. The grass was likely introduced independently to eastern and western Canada post-1880. We detected regional variation in the grass's genetic diversity using starch gel electrophoresis to analyze genetic diversity at 25 allozyme loci in 60 populations collected across Canada. The Pgm-1a & Pgm-2a multilocus genotype, which occurs in the grass's native range in Eastern Europe, is prevalent in eastern Canada but occurs at low frequency in western Canada. In contrast, the Got-4c multilocus genotype, found in the native range in Central Europe, is widespread in populations from western Canada. Overall genetic diversity of B. tectorum is much higher in eastern Canada than in the eastern U.S., while the genetic diversity in populations in western North America is similar between Canada and the U.S. The distribution of genetic diversity across Canada strongly suggests multiple introduction events. Heterozygous individuals, which are exceedingly rare in B. tectorum, were detected in three Canadian populations. Formation of novel genotypes through occasional outcrossing events could spark adaptive evolution and further range expansion across Canada of this exceedingly damaging grass.  相似文献   

13.
Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate the invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America were compared using the amplified fragment length polymorphisms (AFLP's). An analysis of molecular variance showed that a significant part (10%) of the total genetic variations between all individuals could be explained by native or invasive origin.Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native sources in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.  相似文献   

14.
1. Terrestrial dispersal by aquatic insects increases population connectivity in some stream species by allowing individuals to move outside the structure of the stream network. In addition, individual survival and reproductive success (as well as dispersal) are tightly linked to the quality of the terrestrial habitat. 2. In historically forested catchments, deforestation and altered land use have the potential to interfere with mayfly dispersal or mating behaviours by degrading the quality of the terrestrial matrix among headwater streams. We hypothesised that loss of tree cover in first‐order catchments would be associated with an increase in population substructure and a decrease in genetic diversity of mayfly populations. 3. To test this hypothesis, we investigated spatial patterns of genetic variation in the common mayfly Ephemerella invaria across a gradient of deforestation in the central piedmont region of eastern United States. Intraspecific genetic diversity and population substructure were estimated from data obtained using fluorescent amplified fragment length polymorphism (AFLP) markers. 4. We found that mayfly populations had low population substructure within headwater stream networks and that genetic diversity was strongly negatively correlated with mean deforestation of the first‐order catchments. The large‐scale pattern of population substructure followed a pattern of isolation by distance (IBD) in which genetic differentiation increases with geographical distance, but assignment tests placed a few individuals into populations 300 km away from the collection site. 5. Our results show that loss of genetic diversity in this widespread aquatic insect species is co‐occurring with deforestation of headwater streams. 6. Most arguments supporting protection of headwater streams in the United States have centred on the role of these streams as hydrological and biogeochemical conduits to downstream waters. Our work suggests that headwater stream land use, and specifically tree cover, may have a role in the maintenance of regional genetic diversity in some common aquatic insect species.  相似文献   

15.
Colson I  Hughes RN 《Molecular ecology》2004,13(8):2223-2233
The dogwhelk Nucella lapillus is a predatory marine gastropod populating North Atlantic rocky shores. As with many other gastropod species, N. lapillus was affected by tributyltin (TBT) pollution during the 1970s and 1980s, when local populations became extinct. After a partial ban on TBT in the United Kingdom in 1987, vacant sites have been recolonized. N. lapillus lacks a planktonic larval stage and is therefore expected to have limited dispersal ability. Relatively fast recolonization of some sites, however, contradicts this assumption. We compared levels of genetic diversity and genetic structuring between recolonized sites and sites that showed continuous population at three localities across the British Isles. No significant genetic effects of extinction/recolonization events were observed in SW Scotland and NE England. In SW England we observed a decrease in genetic diversity and an increase in genetic structure in recolonized populations. This last result could be an artefact, however, due to the superposition of other local factors influencing the genetic structuring of dogwhelk populations. We conclude that recolonization of vacant sites was accomplished by a relatively high number of individuals originating from several source populations (the 'migrant-pool' model of recolonization), implying that movements are more widespread than expected on the basis of development mode alone. Comparison with published data on genetic structure of marine organisms with contrasted larval dispersal supports this hypothesis. Our results also stress the importance of local factors (geographical or ecological) in determining genetic structure of dogwhelk populations.  相似文献   

16.
? Premise of the study: The mechanisms for range expansion in invasive species depend on how genetic variation is structured in the introduced range. This study examined neutral genetic variation in the invasive annual grass Bromus tectorum in the Intermountain Western United States. Patterns of microsatellite (SSR) genotype distribution in this highly inbreeding species were used to make inferences about the roles of adaptively significant genetic variation, broadly adapted generalist genotypes, and facultative outcrossing in the recent range expansion of B. tectorum in this region. ? Methods: We sampled 20 individuals from each of 96 B. tectorum populations from historically and recently invaded habitats throughout the region and used four polymorphic SSR markers to characterize each individual. ? Key results: We detected 131 four-locus SSR genotypes; however, the 14 most common genotypes collectively accounted for 79.2% of the individuals. Common SSR genotypes were not randomly distributed among habitats. Instead, characteristic genotypes sorted into specific recently invaded habitats, including xeric warm and salt desert as well as mesic high-elevation habitats. Other SSR genotypes were common across a range of historically invaded habitats. We observed very few heterozygous individuals (0.58%). ? Conclusions: Broadly adapted, generalist genotypes appear to dominate historically invaded environments, while recently invaded salt and warm desert habitats are dominated by distinctive SSR genotypes that contain novel alleles. These specialist genotypes are not likely to have resulted from recombination; they probably represent more recent introductions from unknown source populations. We found little evidence that outcrossing plays a role in range expansion.  相似文献   

17.
Understanding the biological conditions and the genetic basis of early stages of sexual isolation and speciation is an outstanding question in evolutionary biology. It is unclear how much genetic and phenotypic variation for mating preferences and their phenotypic cues is segregating within widespread and human-commensal species in nature. A recent case of incipient sexual isolation between Zimbabwe and cosmopolitan populations of the human-commensal fruit fly Drosophila melanogaster indicates that such species may initiate the process of sexual isolation. However, it is still unknown whether other geographical populations have undergone evolution of mating preferences. In this study we present new data on multiple-choice mating tests revealing partial sexual isolation between the United States and Caribbean populations. We relate our findings to African populations, showing that Caribbean flies are partially sexually isolated from Zimbabwe flies, but mate randomly with West African flies, which also show partial sexual isolation from the United States and Zimbabwe flies. Thus, Caribbean and West African populations seem to exhibit distinct mating preferences relative to populations in the United States and in Zimbabwe. These results suggest that widespread and human-commensal species may harbor different types of mating preferences across their geographical ranges.  相似文献   

18.
Arundo donax (giant reed) is an aggressive invasive weed of riparian habitats throughout the southern half of the United States from California to Maryland. Native to Asia, the species is believed to have been initially introduced into North America from the Mediterranean region although subsequent introductions were from multiple regions. To provide insight into the potential for biological control of A. donax, genetic variation in plants sampled from a wide geographical area in the United States was analyzed using Sequence Related Amplification Polymorphism (SRAP) and transposable element (TE)-based molecular markers. Invasive individuals from 15 states as well as four populations in southern France were genetically fingerprinted using 10 SRAP and 12 TE-based primer combinations. With the exception of simple mutations detected in four plants, A. donax exhibited a single multilocus DNA fingerprint indicating a single genetic clone. The genetic uniformity of invasive A. donax suggests that classical biological control of the species could be successful. A lack of genetic diversity in the invaded range simplifies identification of native source populations to search for natural enemies that could be used as biocontrol agents.  相似文献   

19.
High‐density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene‐associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome‐wide distributed SNPs that are represented in populations of diverse geographical origin. We used density‐based spatial clustering algorithms to enable high‐throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model‐free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low‐intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.  相似文献   

20.
Accurate knowledge of population structure in cetaceans is critical for preserving and managing breeding habitat, particularly when habitat is not uniformly protected. Most eastern gray whales return to their major breeding range each winter along the Pacific coast of Baja California, Mexico, concentrating in 3 major calving lagoons, but it is unknown whether genetic differences exist between lagoons. Previous photo-identification studies and genetic studies suggest that gray whales may return to their natal lagoons to breed, potentially resulting in the buildup of genetic differences. However, an earlier genetic study used only one genetic marker and did not include samples from Bahia Magdalena, a major calving lagoon not currently designated as a wildlife refuge. To expand on this previous study, we collected genetic data from the mitochondrial control region (442 bp) and 9 microsatellite markers from 112 individuals across all 3 major calving lagoons. Our data suggest that migration rates between calving lagoons are high but that a small but significant departure from panmixia exists between Bahia Magdalena and Laguna San Ignacio (Fisher's Exact test, P < 0.0001; F(ST) = 0.006, P = 0.025). Coalescent simulations show that the lack of extensive population structure may result from the disruption of structure due to whaling. Another possibility is that rates of migration have always been high (>10% per generation). In addition, microsatellite data showed evidence of a severe population bottleneck. Eastern gray whales are still recovering from the impacts of whaling on their breeding grounds, and these populations should be protected and monitored for future genetic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号