首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of nerve growth factor (NGF), dibutyryl cyclic AMP (db cAMP), and cholera toxin on neurofilament protein expression in cultures of PC12 rat pheochromocytoma cells were examined using an enzyme-linked immunoadsorbent assay (ELISA). Morphological differentiation induced by NGF was associated with up to 30-fold increases in the level of neurofilament protein recognised by monoclonal antibody RT97. A more rapid response was apparent from primed as compared to naive PC12 cells. Cholera toxin and db cAMP both induced morphological differentiation of naive PC12 cells, but failed to promote neurite regeneration from primed cells. Neither response was associated with a significant induction of neurofilament protein. Both cholera toxin and db cAMP, but not B-cholera toxin nor antibodies to the toxin receptor, were found to inhibit the neurofilament protein response induced by NGF. Primed cells were more susceptible to this inhibition, and both cholera toxin and db cAMP inhibited neurite regeneration from these cells. These data suggest that increased intracellular cyclic AMP can suppress the expression of neuronal differentiation antigens induced by NGF, and are consistent with a role for neurofilament protein in promoting or facilitating the formation of a stable neuritic network.  相似文献   

2.
The relative expression of the immunoglobulin superfamily members Thy-1 and L1 and the neural cell adhesion molecule (N-CAM) in PC12 cells grown in the presence of nerve growth factor (NGF), cholera toxin, or both has been quantified. Whereas NGF treatment induced increases in the cell surface expression of all three glycoproteins, treatment with cholera toxin resulted in the specific induction of L1. During the first few days of culture, cholera toxin acted synergistically with NGF to promote increases in neuritic outgrowth and the synthesis and cell surface accumulation of the 140- and 180-kilodalton subunits of N-CAM. In contrast, over the same period of culture, cholera toxin inhibited the NGF induction of Thy-1 and L1. Over longer periods of culture (3-5 days), cholera toxin inhibited the NGF induction of N-CAM and neurite outgrowth. A similar pattern of synergistic and inhibitory responses was observed when differentiation was induced by fibroblast growth factor (FGF) rather than NGF or when cholera toxin was replaced with forskolin. These data suggest that intracellular cyclic AMP can differentially modulate cell surface glycoprotein expression induced by either NGF or FGF. Of the three cell surface glycoproteins we have studied, temporal changes in N-CAM expression correlate best with the morphological differentiation status of PC12 cells.  相似文献   

3.
4.
5.
The growth of PC12 cells on a collagen substratum or on monolayers of several non-neuronal cell types was studied by measuring nerve growth factor (NGF)-dependent increases in the expression of a 150 X 10(3) (Mr) neurofilament protein subunit and the membrane glycoprotein Thy-1. Both responses were found to be greatly suppressed in cultures of fibroblasts as compared to the C2 and G8-1 muscle cell lines and the C6 glioma cell line. This suppression was associated with an inhibition of NGF-dependent neuritic outgrowth from PC12 cells grown on fibroblast monolayers. There was no evidence that fibroblasts secrete soluble molecules that directly inhibit these responses or neutralize NGF. In addition, there was no difference in the neurofilament protein response from PC12 cells that had been treated with NGF prior to coculture, and the now primed PC12 cells readily extended axons over fibroblast monolayers. These data demonstrate that cell-cell and/or cell-matrix interactions can modulate biochemical responses to NGF and suggest that responsiveness of neuronal cells to environmental cues is not immutable. Control of the latter may be at the level of expression of receptor molecules for cell-surface- or matrix-associated macromolecules and a similar mechanism operating during development could play a role in growth cone guidance.  相似文献   

6.
7.
8.
9.
The current paradigm for the role of nerve growth factor (NGF) or FGF-2 in the differentiation of neuronal cells implies their binding to specific receptors and activation of kinase cascades leading to the expression of differentiation specific genes. We examined herein the hypothesis that FGF receptors (FGFRs) are involved in NGF-induced neuritogenesis of pheochromocytoma-derived PC12 cells. We demonstrate that in PC12 cells, FGFR expression and activity are modulated upon NGF treatment and that a dominant negative FGFR-2 reduces NGF-induced neuritogenesis. Moreover, FGF-2 expression is modulated by NGF, and FGF-2 is detected at the cell surface. Oligonucleotides that specifically inhibit FGF-2 binding to its receptors are able to significantly reduce NGF-induced neurite outgrowth. Finally, the duration of mitogen-activated protein kinase (MAPK) activity upon FGF or NGF stimulation is shortened in FGFR-2 dominant negative cells through inactivation of signaling from the receptor to the Ras/MAPK pathway. In conclusion, these results demonstrate that FGFR activation is involved in neuritogenesis induced by NGF where it contributes to a sustained MAPK activity in response to NGF.  相似文献   

10.
The structurally similar compounds staurosporine and K252a are potent inhibitors of protein kinases. K252a has previously been reported to inhibit most or all of the effects of nerve growth factor (NGF) on PC12 pheochromocytoma cells, and staurosporine has been reported both to inhibit and to mimic NGF-induced neurite outgrowth from a PC12 cell subclone in a dose-dependent manner. We have studied the interactions of these agents with each other, with NGF, and with forskolin, an activator of adenylate cyclase, on the parent PC12 cell line and on normal neonatal and adult rat chromaffin cells. Staurosporine alone or in conjunction with forskolin induces outgrowth of short neurites from PC12 cells but does not substitute for NGF in promoting cell survival. It does not abolish NGF-induced neurite outgrowth but does reverse the effects of NGF on catecholamine synthesis. K252a abolishes NGF-induced neurite outgrowth but only partially decreases outgrowth induced by NGF plus forskolin. It does not inhibit neurite outgrowth produced by staurosporine or staurosporine plus forskolin. These findings with PC12 cells suggest that staurosporine might act downstream from K252a and NGF on components of one or more signal transduction pathways by which NGF selectively affects the expression of certain traits. Both neonatal and adult rat chromaffin cells show dramatic flattening and extension of filopodia in response to staurosporine, an observation suggesting that some of the same pathways might remain active in cells that do not exhibit a typical NGF response. Only a small amount of neurite outgrowth is observed, however, and only in neonatal cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The Rsu-1 Ras suppressor gene was isolated based on its ability to inhibit v-Ras transformation. Using Rsu-1 transfectants of the pheochromocytoma cell line PC12, we demonstrated previously that Rsu-1 expression inhibited Jun kinase activation but enhanced Erk2 activation in response to epidermal growth factor. In the present study, the Rsu-1 PC12 transfectants were used to investigate the role of Rsu-1 in nerve growth factor (NGF)- and v-Ki-ras-mediated neuronal differentiation. NGF-induced neurite extension was enhanced, not inhibited, by the expression of Rsu-1 in PC12 cells. The activation of Erk kinase activity in response to NGF was sustained longer in the Rsu-1 transfectants compared with the vector control cells. During NGF-mediated differentiation, an increase in the expression of specific mRNAs for the early response genes Fos, cJun, and NGF1a was detected in both the vector control and Rsu-1 transfectants. The expression of the differentiation-specific genes VGF8 and SCG10 was similar in Rsu-1 transfectants compared with the vector control cells. The induction of Rsu-1 expression in these cell lines did not inhibit v-Ki-ras-induced differentiation, as measured by neurite extension. These data suggest that although Rsu-1 blocked some Ras-dependent response(s), these responses were not required for differentiation. Moreover, the induction of Rsu-1 expression in the PC12 clones resulted in growth inhibition and p21(WAF/CIP) expression. Hence, Rsu-1 expression enhances NGF-induced differentiation while inhibiting the growth of cells.  相似文献   

12.
13.
Abstract: Exogenous gangliosides, especially ganglioside GM1 (GM1), seem to potentiate the action of nerve growth factor (NGF). We have examined the possible regulation of the NGF signaling pathway in PC12 cells by the B subunit of cholera toxin (CTB), which binds to endogenous GM1 specifically and with a high affinity. CTB treatment (1 μg/ml) enhanced NGF-induced neurite outgrowth from PC12 cells, NGF-induced activation of ribosomal protein S6 kinase, and NGF-induced stimulation of trk phosphorylation. CTB plus NGF also caused a greater inhibition of [3H]-thymidine incorporation into DNA than did NGF alone. These enhancing effects of CTB were blocked by the presence of cytochalasin B in the culture medium but were not affected by the presence of colchicine or by the depletion of Ca2+ in the medium. 125I-NGF binding experiments revealed that CTB treatment did not affect the specific binding of NGF to the cells. These results strongly suggest that the binding of cell surface GM1 by CTB modulates the pathway of intracellular signaling initiated by NGF and that the association of CTB with a cytoskeletal component is essential for these effects.  相似文献   

14.
15.
16.
Early-response genes (ERGs) are rapidly induced by nerve growth factor (NGF) in the PC12 rat pheochromocytoma cell line. To analyze the possible role of Ras and ERGs in neuronal differentiation, experiments were carried out to study the involvement of Ras proteins in the NGF-stimulated expression of two ERG-coded proteins (c-Fos and Zif268) implicated in NGF signaling. Using PC12 subclones expressing the dominant negative Ha-Ras Asn-17 protein, NGF-induced expression, phosphorylation and DNA-binding of these ERG products were found to be not sufficient to convey the biological response of PC12 cells to NGF.  相似文献   

17.
Association of 125I-nerve growth factor (NGF) with PC12 pheochromocytoma cells was studied. Surface-bound and internalized NGF were distinguished by differential release of the former at low pH, high salt. Binding to the surface was rapid; at 0.2 nM (5 ng/ml) 125I-NGF, this was near-maximal within 5 min. Internalization, in contrast, did not start until about 2 min after NGF exposure and, thereafter, proceeded linearly for at least 1/2-1 h. By the latter time, approximately 75% of total bound NGF was within rather than on the surface of the cells. Binding versus concentration experiments indicated two distinct classes of surface binding sites. For both naive cells and cells treated with NGF for at least a week (primed cells), about 7% of the receptors had an apparent binding constant of about 0.3 nM; the remaining sites half-saturated at approximately 4 nM NGF. The number of each type of site was 3--4-fold higher/mg of protein in primed cells. For both naive and primed cultures, internalization appeared to be mediated by a single class of uptake sites which half-saturated at about 0.3 nM. The maximal rate of uptake by primed cells (200 fmol/h/mg protein) was about twice that for naive cells. Light and electron microscopic autoradiography indicated that the density of binding was substantially higher in primed cultures and that this increase took place over a time course of days to weeks. These findings suggest that NGF brings about long-term increases in its own high- and low-affinity surface receptors, but is internalized only via the high-affinity sites.  相似文献   

18.
19.
Wang TC  Chiu H  Chang YJ  Hsu TY  Chiu IM  Chen L 《PloS one》2011,6(10):e26433
SH2B adaptor protein family members (SH2B1-3) regulate various physiological responses through affecting signaling, gene expression, and cell adhesion. SH2B1 and SH2B2 were reported to enhance nerve growth factor (NGF)-induced neuronal differentiation in PC12 cells, a well-established neuronal model system. In contrast, SH2B3 was reported to inhibit cell proliferation during the development of immune system. No study so far addresses the role of SH2B3 in the nervous system. In this study, we provide evidence suggesting that SH2B3 is expressed in the cortex of embryonic rat brain. Overexpression of SH2B3 not only inhibits NGF-induced differentiation of PC12 cells but also reduces neurite outgrowth of primary cortical neurons. SH2B3 does so by repressing NGF-induced activation of PLCγ, MEK-ERK1/2 and PI3K-AKT pathways and the expression of Egr-1. SH2B3 is capable of binding to phosphorylated NGF receptor, TrkA, as well as SH2B1β. Our data further demonstrate that overexpression of SH2B3 reduces the interaction between SH2B1β and TrkA. Consistent with this finding, overexpressing the SH2 domain of SH2B3 is sufficient to inhibit NGF-induced neurite outgrowth. Together, our data demonstrate that SH2B3, unlike the other two family members, inhibits neuronal differentiation of PC12 cells and primary cortical neurons. Its inhibitory mechanism is likely through the competition of TrkA binding with the positive-acting SH2B1 and SH2B2.  相似文献   

20.
Abstract: Phospholipase C γ1 (PLC-γ1) is phosphorylated on treatment of cells with nerve growth factor (NGF). To assess the role of PLC-γ1 in mediating the neuronal differentiation induced by NGF treatment, we established PC12 cells that overexpress whole PLC-γ1 (PLC-γ1PC12), the SH2-SH2-SH3 domain (PLC-γ1SH223PC12), SH2-SH2-deleted mutants (PLC-γ1ΔSH22PC12), and SH3-deleted mutants (PLC-γ1ΔSH3PC12). Overexpressed whole PLC-γ1 or the SH2-SH2-SH3 domain of PLC-γ1 stimulated cell growth and inhibited NGF-induced neurite outgrowth of PC12 cells. However, cells expressing PLC-γ1 lacking the SH2-SH2 domain or the SH3 domain had no effect on NGF-induced neuronal differentiation. Overexpression of intact PLC-γ1 resulted in a threefold increase in total inositol phosphate accumulation on treatment with NGF. However, overexpression of the SH2-SH2-SH3 domain of PLC-γ1 did not alter total inositol phosphate accumulation. To investigate whether the SH2-SH2-SH3 domain of PLC-γ1 can mediate the NGF-induced signal, tyrosine phosphorylation of the SH2-SH2-SH3 domain of PLC-γ1 on NGF treatment was examined. The SH2-SH2-SH3 domain of PLC-γ1 as well as intact PLC-γ1 could be tyrosine-phosphorylated on NGF treatment. These results indicate that the overexpressed SH2-SH2-SH3 domain of PLC-γ1 can block the differentiation of PC12 cells induced by NGF and that the inhibition appears not to be related to the lipase activity of PLC-γ1 but to the SH2-SH2-SH3 domain of PLC-γ1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号