首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant improvement depends on generating phenotypic variation and selecting for characteristics that are heritable. Classical genetics and early molecular genetics studies on single genes showed that differences in chromatin structure, especially cytosine methylation, can contribute to heritable phenotypic variation. Recent molecular genetic and genomic studies have revealed a new importance of cytosine methylation for gene regulation and have identified RNA interference (RNAi)-related proteins that are necessary for methylation. Methylation differences among plants can be caused by cis- or trans-acting DNA polymorphisms or by epigenetic phenomena. Although regulatory proteins might be important in creating this variation, recent examples highlight the central role of transposable elements and DNA repeats in generating both genetic and epigenetic methylation polymorphisms. The plant genome's response to environmental and genetic stress generates both novel genetic and epigenetic methylation polymorphisms. Novel, stress-induced genotypes may contribute to phenotypic diversity and plant improvement.  相似文献   

2.
Repetitive DNA and chromosome evolution in plants   总被引:32,自引:0,他引:32  
Most higher plant genomes contain a high proportion of repeated sequences. Thus repetitive DNA is a major contributor to plant chromosome structure. The variation in total DNA content between species is due mostly to variation in repeated DNA content. Some repeats of the same family are arranged in tandem arrays, at the sites of heterochromatin. Examples from the Secale genus are described. Arrays of the same sequence are often present at many chromosomal sites. Heterochromatin often contains arrays of several unrelated sequences. The evolution of such arrays in populations is discussed. Other repeats are dispersed at many locations in the chromosomes. Many are likely to be or have evolved from transposable elements. The structures of some plant transposable elements, in particular the sequences of the terminal inverted repeats, are described. Some elements in soybean, antirrhinum and maize have the same inverted terminal repeat sequences. Other elements of maize and wheat share terminal homology with elements from yeast, Drosophila, man and mouse. The evolution of transposable elements in plant populations is discussed. The amplification, deletion and transposition of different repeated DNA sequences and the spread of the mutations in populations produces a turnover of repetitive DNA during evolution. This turnover process and the molecular mechanisms involved are discussed and shown to be responsible for divergence of chromosome structure between species. Turnover of repeated genes also occurs. The molecular processes affecting repeats imply that the older a repetitive DNA family the more likely it is to exist in different forms and in many locations within a species. Examples to support this hypothesis are provided from the Secale genus.  相似文献   

3.
4.
Retrotransposons are an abundant and ancient component of plant genomes, yet recent evidence indicates that element activity in many modern plants is restricted to times of stress. Stress activation of plant retrotransposons may be a significant factor in somaclonal variation, in addition to providing an important means to isolate new active elements. Long terminal repeat retrotransposons and a second class of elements we have called miniature inverted-repeat transposable elements (MITEs) have recently been found to be associated with the genes of diverse plants where some contribute regulatory sequences. Because of their sequence diversity and small size, MITEs may be a valuable evolutionary tool for altering patterns of gene expression.  相似文献   

5.
6.
We analyze genetic variation at fused1, a locus that is close to the centromere of the X chromosome-autosome (X/4) fusion in Drosophila americana. In contrast to other X-linked and autosomal genes, for which a lack of population subdivision in D. americana has been observed at the DNA level, we find strong haplotype structure associated with the alternative chromosomal arrangements. There are several derived fixed differences at fused1 (including one amino acid replacement) between two haplotype classes of this locus. From these results, we obtain an estimate of an age of approximately 0.61 million years for the origin of the two haplotypes of the fused1 gene. Haplotypes associated with the X/4 fusion have less DNA sequence variation at fused1 than haplotypes associated with the ancestral chromosome arrangement. The X/4 haplotypes also exhibit clinal variation for the allele frequencies of the three most common amino acid replacement polymorphisms, but not for adjacent silent polymorphisms. These patterns of variation are best explained as a result of selection acting on amino acid substitutions, with geographic variation in selection pressures.  相似文献   

7.
The ribosomal rDNA gene array is an epigenetically-regulated repeated gene locus. While rDNA copy number varies widely between and within species, the functional consequences of subtle copy number polymorphisms have been largely unknown. Deletions in the Drosophila Y-linked rDNA modifies heterochromatin-induced position effect variegation (PEV), but it has been unknown if the euchromatic component of the genome is affected by rDNA copy number. Polymorphisms of naturally occurring Y chromosomes affect both euchromatin and heterochromatin, although the elements responsible for these effects are unknown. Here we show that copy number of the Y-linked rDNA array is a source of genome-wide variation in gene expression. Induced deletions in the rDNA affect the expression of hundreds to thousands of euchromatic genes throughout the genome of males and females. Although the affected genes are not physically clustered, we observed functional enrichments for genes whose protein products are located in the mitochondria and are involved in electron transport. The affected genes significantly overlap with genes affected by natural polymorphisms on Y chromosomes, suggesting that polymorphic rDNA copy number is an important determinant of gene expression diversity in natural populations. Altogether, our results indicate that subtle changes to rDNA copy number between individuals may contribute to biologically relevant phenotypic variation.  相似文献   

8.
9.
10.
11.
Building blocks for plant gene assembly   总被引:1,自引:1,他引:0       下载免费PDF全文
The MultiSite Gateway cloning system, based on site-specific recombination, enables the assembly of multiple DNA fragments in predefined order, orientation, and frame register. To streamline the construction of recombinant genes for functional analysis in plants, we have built a collection of 36 reference Gateway entry clones carrying promoters, terminators, and reporter genes, as well as elements of the LhG4/LhGR two-component system. This collection obeys simple engineering rules. The genetic elements (parts) are designed in a standard format. They are interchangeable, fully documented, and can be combined at will according to the desired output. We also took advantage of the MultiSite Gateway recombination sites to create vectors in which two or three genes can be cloned simultaneously in separate expression cassettes. To illustrate the flexibility of these core resources for the construction of a wide variety of plant transformation vectors, we generated various transgenes encoding fluorescent proteins and tested their activity in plant cells. The structure and sequence of all described plasmids are accessible online at http://www.psb.ugent.be/gateway/. All accessions can be requested via the same Web site.  相似文献   

12.
Nearly 100 genes and functional polymorphisms underlying natural variation in plant development and physiology have been identified. In crop plants, these include genes involved in domestication traits, such as those related to plant architecture, fruit and seed structure and morphology, as well as yield and quality traits improved by subsequent crop breeding. In wild plants, comparable traits have been dissected mainly in Arabidopsis thaliana. In this review, we discuss the major contributions of the analysis of natural variation to our understanding of plant development and physiology, focusing in particular on the timing of germination and flowering, plant growth and morphology, primary metabolism, and mineral accumulation. Overall, functional polymorphisms appear in all types of genes and gene regions, and they may have multiple mutational causes. However, understanding this diversity in relation to adaptation and environmental variation is a challenge for which tools are now available.  相似文献   

13.
14.
15.
Kwiatkowski D 《Parassitologia》1999,41(1-3):233-240
It is poorly understood why some malarial infections are fatal while others resolve without complications. Host genetic factors are partly responsible. More than ten specific susceptibility determinants have already been defined, including both structural and regulatory polymorphisms of erythyrocytes and of the immune system, and it is likely that many more have yet to be discovered. A vast number of DNA polymorphisms, scattered throughout the human genome, cause individual variation in probably all immunological and biochemical processes. Advances in DNA technology offer the prospect of screening thousands of candidate genes for association with susceptibility to severe malaria in large multicentre case-control and family-based studies. Saturation mapping of candidate gene regions, combined with cellular and molecular analysis of disease-associated polymorphisms, is essential for understanding the functional basis of the genetic associations that such an exercise will generate. This information will pinpoint critical molecular pathways in immunity and pathogenesis and may lead to fundamentally new strategies for treatment and prevention of severe malaria.  相似文献   

16.
Transposable elements (TEs) are powerful mutagenic agents responsible for generating variation in the host genome. As TEs can be overtly deleterious, a variety of different mechanisms have evolved to keep their activities in check. In plants, fungi, and animals, RNA silencing has been implicated as a major defense against repetitive element transposition. This nucleic acid-based defense mechanism also appears to be directed at inherited silencing of TEs without altering the underlying DNA sequence. Complex interactions between TEs and RNA silencing machineries have been co-opted to regulate cellular genes.  相似文献   

17.
Loss or gain of DNA methylation can affect gene expression and is sometimes transmitted across generations. Such epigenetic alterations are thus a possible source of heritable phenotypic variation in the absence of DNA sequence change. However, attempts to assess the prevalence of stable epigenetic variation in natural and experimental populations and to quantify its impact on complex traits have been hampered by the confounding effects of DNA sequence polymorphisms. To overcome this problem as much as possible, two parents with little DNA sequence differences, but contrasting DNA methylation profiles, were used to derive a panel of epigenetic Recombinant Inbred Lines (epiRILs) in the reference plant Arabidopsis thaliana. The epiRILs showed variation and high heritability for flowering time and plant height (~30%), as well as stable inheritance of multiple parental DNA methylation variants (epialleles) over at least eight generations. These findings provide a first rationale to identify epiallelic variants that contribute to heritable variation in complex traits using linkage or association studies. More generally, the demonstration that numerous epialleles across the genome can be stable over many generations in the absence of selection or extensive DNA sequence variation highlights the need to integrate epigenetic information into population genetics studies.  相似文献   

18.
Systematic screens have revealed extensive DNA sequence variation existing in the human population. Studies of the role of polymorphic genetic variants in explaining the association of family history with risk of common disease have generally focused on variants predicted to disrupt protein structure and activity. Recent studies have identified genetic variation in the level of expression of many genes, variation that is potentially biologically relevant in explaining individual variation in disease risk. In a survey of data available for 108 DNA repair genes that have been systematically screened for sequence variation, an average of 3.3 SNPs per gene were found to exist at a variant allele frequency of at least 0.02 in the region 2kb upstream from the 5'-untranslated region. One-third of the genes harbored a SNP with an allele frequency of at least 0.02 within a predicted promotor element. These variants are distributed among promoter elements that average 20 elements per gene. The frequency of polymorphic SNPs in CpG islands was 0.8 per gene, while the frequency of SNPs in the 5'-UTR was 0.7 per gene. The recognition of extensive genetic variation with potential to impact levels of gene expression, and thereby exacerbate the impact of amino acid substitution variants on the activity of proteins, increases the complexity of analyses required to explain the molecular genetic basis for the familial contribution to the sporadic incidence of common disease.  相似文献   

19.
插入序列共同区元件:细菌中新出现的一种基因捕获系统   总被引:1,自引:0,他引:1  
摘要:插入序列共同区(Insertion sequence common region,ISCR)元件是一类在结构和功能上与IS91家族相似的特殊插入序列,特点是缺少了末端反向重复序列(Inverted repeats, IRs),在插入位点不产生直接重复序列,并通过滚环式(Rolling circle, RC)进行转座。ISCR元件作为一种新的基因捕获系统,它可以移动邻近的任何DNA序列,为耐药基因在不同种属细菌间水平传播提供了高效的媒介。世界各地多种革兰氏阴性病原菌中已发现有19种ISCR元件,大部分ISCR元件同时携带了多种耐药基因,提示ISCR有可能会造成细菌多重耐药性的快速传播。本文就ISCR结构特征、类型、移动方式、起源及进化的研究进展进行了综述。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号