首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The style of lily produces a specialized extracellular matrix (ECM) in the transmitting tract epidermis that functions to guide pollen tubes to the ovary. This adhesive ECM contains low esterified pectins and a peptide, SCA (stigma/stylar cysteine-rich adhesin). Together they form a matrix to which pollen tubes adhere as they grow through the style. Pollen tubes also adhere to each other but only when grown in vivo, not in vitro. Pollen does not produce detectable SCA, but when SCA is added to an in vitro growth medium, it binds to pollen tubes that have esterified and low-esterified pectins in their walls. Since adhesion of the pollen tube to the stylar matrix requires tip growth, we hypothesized that the pectin wall at the pollen tube tip interacted with the SCA protein to initiate adhesion with the stylar pectin [Lord (2000) Trends Plant Sci 5:368–373]. Here, we use a pollen protoplast system to examine the effect of SCA on protoplast adhesion when it is added to the growth medium in the absence of the stylar pectin. We found that SCA induces a 2-fold increase in protoplast adhesion when it is added at the start of protoplast culture. This effect is less when SCA is added to the medium after the cell wall on the protoplast has begun to regenerate. We show that among the first components deposited in the new wall are arabinogalactan proteins (AGPs) and highly esterified pectins. We see no labeling for low esterified pectins even after 3 days of culture. In the pollen protoplast culture, adhesion occurs in the absence of the low esterified pectin. The newly formed wall on the protoplast mirrors that of the pollen tube tip in lily, which is rich in AGPs and highly esterified pectins. Thus, the protoplast system may be useful for isolating the pollen partner for SCA in this adhesion event.  相似文献   

2.
In lily, adhesion of the pollen tube to the transmitting-tract epidermal cells (TTEs) is purported to facilitate the effective movement of the tube cell to the ovary. In this study, we examine the components of the extracellular matrices (ECMs) of the lily pollen tubes and TTEs that may be involved in this adhesion event. Several monoclonal antibodies to plant cell wall components such as esterified pectins, unesterified pectins, and arabinogalactan-proteins (AGPs) were used to localize these molecules in the lily pollen tube and style at both light microscope (LM) and transmission electron microscope (TEM) levels. In addition, (-d-Glc)3 Yariv reagent which binds to AGPs was used to detect AGPs in the pollen tube and style. At the LM level, unesterified pectins were localized to the entire wall in in-vivo- and in-vitro-grown pollen tubes as well as to the surface of the stylar TTEs. Esterified pectins occurred at the tube tip region (with some differences in extent in in-vivo versus in-vitro tubes) and were evenly distributed in the entire style. At the TEM level, esterified pectins were detected inside pollen tube cell vesicles and unesterified pectins were localized to the pollen tube wall. The in-vivo pollen tubes adhere to each other and can be separated by pectinase treatment. At the LM level, AGP localization occurred in the tube tip of both in-vivo- and in-vitro-grown pollen tubes and, in the case of one AGP probe, on the surface of the TTEs. Another AGP probe localized to every cell of the style except the surface of the TTE. At the TEM level, AGPs were mainly found on the plasma membrane and vesicle membranes of in-vivo-grown pollen tubes as well as on the TTE surface, with some localization to the adhesion zone between pollen tubes and style. (-d-Glc)3 Yariv reagent bound to the in-vitro-grown pollen tube tip and significantly reduced the growth of both in-vitro- and in-vivo-grown pollen tubes. This led to abnormal expansion of the tube tip and random deposition of callose. These effects could be overcome by removal of (-d-Glc)3 Yariv reagent which resulted in new tube tip growth zones emerging from the flanks of the arrested tube tip. The possible roles of pectins and AGPs in adhesion during pollination and pollen tube growth are discussed.Abbreviations AGP arabinogalactan-protein - ECM extracellular matrix - Glc glucose - MAbs monoclonal antibodies - LM light microscope - Man mannose - TEM transmission electron microscope - TTE transmitting tract epidermal cell The authors thank Michael Georgiady for assistance with the preparation of material for the TEM immunolocalization, Diana Dang for her help with the pectinase experiment, and Kathleen Eckard for assistance in all aspects of this study. The MAbs were the generous gifts of Dr. J.P. Knox. G.Y. Jauh thanks Dr. E.A. Nothnagel for assistance in making the Yariv reagent and for the gift of the control (-d-Man)3 Yariv reagent. This work is in partial fulfilment of the dissertation requirements for a PhD degree in Botany and Plant Sciences for G.Y. Jauh at the University of California, Riverside. This work was supported by National Science Foundation grant 91-18554 and an R.E.U. grant to E.M.L.  相似文献   

3.
Qin Y  Chen D  Zhao J 《Protoplasma》2007,231(1-2):43-53
Summary. Western blot analysis indicated the presence of two epitopes recognized by the anti-arabinogalactan protein antibodies JIM13 and LM2 and the absence of the JIM4 epitope in mature tobacco anthers. Immunoenzyme localization of arabinogalactan proteins (AGPs) with JIM13 showed that AGPs accumulate mainly at the early stages of anther development. AGP content and distribution were also investigated at the ultrastructural level in pollen tubes grown in vivo and in vitro. Abundant AGPs were present in the transmitting tissue of styles, and the AGP content of the extracellular matrix changed during pollen tube growth. In pollen tubes, immunogold particles were mainly distributed in the cell wall and cytoplasm, especially around the peripheral region of the generative-cell wall. β-D-Glucosyl Yariv reagent, which specifically binds to AGPs, caused slow growth of pollen tubes and reduced immunogold labeling of AGPs with JIM13 in vitro. These data suggest that AGPs participate in male gametogenesis and pollen tube growth and may be important surface molecules in generative and sperm cells. Correspondence and reprints: Key Laboratory of the Ministry of Education for Plant Developmental Biology, College of Life Sciences, Wuhan University, Wuhan 430072, People’s Republic of China.  相似文献   

4.
5.
Abreu I  Oliveira M 《Protoplasma》2004,224(1-2):123-128
Summary. The cell wall composition of germinating pollen grains of Actinidia deliciosa was studied by immunolocalization with monoclonal antibodies against arabinogalactan proteins (AGPs) and pectins. In ungerminated pollen, the JIM8 epitope (against a subset of AGPs) was located in the intine and in the cytoplasm, while the MAC207 epitope (against AGPs) was only located in the exine. After germination, the JIM8 and MAC 207 epitopes were located in the cytoplasm and in the pollen tube wall. The Yariv reagent that binds to AGPs was added to the germination medium inducing a reduction or inhibition in pollen germination. This indicates that AGPs are present in the growing pollen tube and play an important role in pollen germination. To identify the nature of the pectins found in pollen grains and tubes, four monoclonal antibodies were used. The JIM5 epitope (against unesterified pectins) was located in the intine, more intensely in the pore region, and along the pollen tube wall, and the JIM7 epitope (against methyl-esterified pectins) was also observed in the cytoplasm. After germination, the JIM5 epitope was located in the pollen tube wall; although, the tube tip was not labelled. The JIM7 epitope was located in the entire pollen tube wall. LM5 (against galactans) showed a labelling pattern similar to that of JIM5 and the pattern of LM6 (against arabinans) was similar to that of JIM7. Pectins show different distribution patterns when the degree of esterification is considered. Pollen tube wall pectins are less esterified than those of the pollen tube tip. The association of AGPs with pectins in the cell wall of the pollen grain and the pollen tube may play an important role in the maintenance of cell shape during pollen growth and development.Correspondence and reprints: Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.  相似文献   

6.
Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube   总被引:18,自引:0,他引:18  
Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall. Received: 14 August 1997 / Accepted: 9 September 1997  相似文献   

7.
Summary The monoclonal antibodies JIM 5 (against unesterified pectin), JIM 7 (against methyl esterified pectin), MAC 207 (against arabinogalactan proteins, AGPs), and JIM 8 (against a subset of AGPs) were utilized singly or in combinations for immunogold labelling of germinated pollen grains and pollen tubes ofNicotiana tabacum. Pectins were localized in the inline of pollen grain, unesterified pectin being more abundant than the esterified one. AGPs were co-localized with pectin in the inline, but were present preferably close to the plasma membrane. In pollen tubes, AGPs, unesterified and esterified pectins were co-localized in the outer and middle layers of the cell wall. The density of the epitopes was not uniform along the length of the pollen tube, but showed alterations. In the pollen tube tip wall esterified pectin was abundantly present, but not AGPs. In the cytoplasm esterified pectin and AGPs were detected in Golgi derived vesicles, indicating their role in the pathway of the cell wall precursors. In the cell wall of generative cell only AGPs, but no pectins were localized. The co-localization of pectins and AGPs in the cell wall of pollen grain and pollen tube might play an important role, not only in maintenance of the cell shape, but also in cell-cell interaction during pollen tube growth and development.Abbreviations AGP arabinogalactan protein - BSA bovine serum albumin - GA glutaraldehyde - MAb monoclonal antibody - NGS normal goat serum - PFA paraformaldehyde  相似文献   

8.
The relative importance of prezygotic mechanisms of gametophytic competition and selection are often unclear due to an absence of observations on the gynoecium and pollen tube growth in vivo. We used LM, SEM, and TEM to study the structure of the gynoecium and the path of pollen tube growth in Raphanus raphanistrum, a sporophytically self-incompatible annual. Wild radish has a papillate stigma and a solid style. A septum, which is characteristic of cruciferous gynoecia, is present in the ovary. After germination on the stigma, pollen tubes grow in the secretion of the transmitting tract of the style. The stylar secretion stains positive for acidic polysaccharides and insoluble carbohydrates, and negative for lipids and protein. In the ovary, the transmitting tissue is contained inside the septum. The secretion in the ovary stains positive only for acidic polysaccharides. Pollen tubes travel inside the septum as they enter the ovary and must exit to the surface of this tissue before ovule fertilization can occur. Pollen tube growth on the septum tracks the intercellular junctions of the septum epidermis where the secretion leaks out through a torn cuticle. Tubes must grow across the obturator before reaching the micropyle of an ovule. The temporal pattern with which tubes growing into the ovary exit the septum can contribute to the previously observed nonrandom patterns of fertilization (Hill and Lord, 1986).  相似文献   

9.
10.
烟草柱头和花柱中阿拉伯半乳糖蛋白的定位   总被引:2,自引:0,他引:2  
通过Western印迹法、免疫组织化学和超微细胞化学等技术,研究了烟草柱头和花柱中阿拉伯半乳糖蛋白(arabinogalactan-proteins,AGPs)的分布。结果表明烟草柱头和花柱组织中含有大量的AGPs,主要分布于柱头表皮细胞的细胞质和分泌层细胞的胞外基质中,且授粉前后AGPs的分布情况差异不明显;而花柱中的AGPs主要分布于表皮细胞的外层细胞壁、维管组织周围细胞的细胞质及引导组织的胞外基质中;花粉管通过后,引导组织胞外基质中AGPs减少,而花粉管细胞质和花粉管壁中检测到大量AGPs。  相似文献   

11.
Summary We have used high-pressure freezing followed by freeze substitution (HPF/FS) to preserve in vivo grown lily pollen tubes isolated from the style. The results indicated that HPF/FS (i) allows excellent preservation of the pollen tubes, (ii) maintains in situ the stylar matrix secreted by the transmitting tract cells, and (iii) preserves the interactions that exist between pollen tubes. Particular attention has been given to the structure of the pollen tube cell wall and the zone of adhesion. The cell wall is composed of an outer fibrillar layer and an inner layer of material similar in texture and nature to the stylar matrix and that is not callose. The stylar matrix labels strongly for arabinogalactan proteins (AGPs) recognized by monoclonal antibody JIM13. The zone of adhesion between pollen tubes contains distinct matrix components that are not recognized by JIM13, and apparent cross-links between the two cell walls. This study indicates that HPF/FS can be used successfully to preserve in vivo grown pollen tubes for ultrastructural investigations as well as characterization of the interactions between pollen tubes and the stylar matrix.Abbreviations AGPs arabinogalactan proteins - FS freeze substitution - HPF high-pressure freezing  相似文献   

12.
Summary In order to compare cell wall formation in gymnosperm pollen with that in angiosperm pollen, the distribution of cell wall constituents in the pollen grain and pollen tube ofPinus densiflora was studied immunocytochemically with monoclonal antibodies JIM 5 (against non- or poorly esterified pectin), JIM 7 (against highly esterified pectin), JIM 13 (against arabinogalactan proteins, AGPs), and LM 2 (against AGPs containing glucuronic acid). In the pollen grain wall, only the outer layer of the intine was labeled with JIM 5 and weakly with JIM 7. The tube wall was scarcely labeled with JIM 5 and very weakly labeled with JIM 7. In contrast, the whole of both the intine and the tube wall was strongly labeled with JIM 13 and LM 2, and the generative-cell wall was also labeled only with LM 2. The hemicellulose B fraction, which is the main polysaccharide fraction from the pollen tube wall, reacted strongly with JIM 13 and especially LM 2, but not with antipectin antibodies. These results demonstrate that the wall constituents and their localization inP. densiflora pollen are considerably different from those reported in angiosperm pollen and suggest that the main components of the cell wall ofP. densiflora pollen are arabinogalactan and AGPs containing glucuronic acid.Abbreviations AGPs arabinogalactan proteins - ELISA enzymelinked immunosorbent assay - MAbs monoclonal antibodies  相似文献   

13.
Mollet JC  Kim S  Jauh GY  Lord EM 《Protoplasma》2002,219(1-2):89-98
Arabinogalactan proteins (AGPs) are abundant complex macromolecules involved in both reproductive and vegetative plant growth. They are secreted at pollen tube tips in Lilium longiflorum. Here, we report the effect of the (beta-D-glucosyl)3 Yariv phenylglycoside, known to interact with AGPs, on pollen tube extension in several plant species. In Annona cherimola the Yariv reagent clearly inhibited pollen tube extension within 1-2 h of treatment, as demonstrated previously for L. longiflorum, but had no effect on Lycopersicon pimpinellifolium, Aquilegia eximia, and Nicotiana tabacum. With the monoclonal antibody JIM13 we also examined these same species for evidence that they secreted AGPs at their pollen tube tips. Only A. cherimola showed evidence of AGPs at the pollen tube tip as does lily. The Yariv reagent causes arrest of tube growth in both A. cherimola and lily, but its removal from the medium allows regeneration of new tip growth in both species. We show that the site of the new emerging tip in lily can be predicted by localization of AGP secretion. Labeling with JIM13 appeared on the flanks of the arrested tip 1 h after removal of the Yariv reagent from the growth medium. After 4 h, many of the Yariv reagent-treated pollen tubes had regenerated new pollen tubes with the tips brightly labeled by JIM13 and with a collar of AGPs left at the emergence site. During this recovery, esterified pectins colocalized with AGPs. Secretion at the site of the new tip may be important in the initial polarization event that occurs on the flanks of the arrested tube tip and results in a new pollen tube.  相似文献   

14.
Localization of pectins in the style of Petunia hybrida before and after pollination was investigated by immunocytochemistry using two primary monoclonal antibodies specific to highly (JIM7) and weakly (JIM5) methylesterified pectins. In the unpollinated style, esterified pectins occurred mainly in the cell walls of cortex tissue, while unesterified pectins were present mainly in the extracellular matrix (ECM) of the transmitting tract. After pollination no remarkable differences were found in pectin distribution in the ground tissue of the style. On the other hand, in the transmitting tract a reduction in the quantity of unesterified pectins was observed. Unesterified pectins in the extracellular regions of the transmitting tissue decreased before the penetration of the pollen tubes, indicating that pollination induces a reduction in the amount of unesterified pectins in the transmitting-tract ECM. The correlation between the degradation of strongly Ca2+-binding pectins and the growing level of those ions in the extracellular regions of the transmitting tract in the pollinated pistil of P. hybrida (M. Lenartowska et al. 1997) suggests that this process may constitute a mechanism for creating an optimum calcium medium for in vivo-growing pollen tubes. Both pectin categories were localized in pollen tubes. Esterified pectin epitopes were localized mainly in the vesicles of the tip cytoplasm. Unesterified pectin epitopes were found in the external fibrillar wall of pollen tubes.  相似文献   

15.
Spatial features of pollen tube growth and the composition of the extracellular matrix (ECM) of transmitting tissue in carpels of Kadsura longipedunculata, a member of the basal angiosperm taxon Schisandraceae, were characterized to identify features of transmitting tissue that might have been important for pollen-carpel interactions during the early history of angiosperms. In addition to growing extracellularly along epidermal cells that make up stigmatic crests of individual carpels, pollen tubes grow on abaxial carpel epidermal cells between unfused carpels along an extragynoecial compitum to subsequently enter an adjacent carpel, a feature important for enhancing seed set in apocarpous species. Histo- and immunochemical data indicated that transmitting tissue ECM is not freely flowing as previously hypothesized. Rather, the ECM is similar to that of a dry-type stigma whereby a cuticular boundary with associated esterase activity confines a matrix containing methyl-esterified homogalacturonans. The Schisandraceae joins an increasing number of basal angiosperm taxa that have a transmitting tissue ECM similar to a dry-type stigma, thereby challenging traditional views that the ancestral pollen tube pathway was similar to a wet-type stigma covered with a freely flowing exudate. Dry-type stigmas are posited to provide tighter control over pollen capture, retention, and germination than wet-type stigmas.  相似文献   

16.
Class III pistil-specific extensin-like proteins (PELPIII) are chimeric hydroxyproline-rich glycoproteins with properties of both extensins and arabinogalactan proteins. The abundance and specific localization of PELPIII in the intercellular matrix (IM) of tobacco (Nicotiana tabacum) stylar transmitting tissue, and translocation of PELPIII from the IM into the pollen tube wall after pollination, presume the biological function of these glycoproteins to be related to plant reproduction. Here we show that in in vitro assays the translocation of PELPIII is specifically directed to the callose inner wall of the pollen tubes, indicating that protein transfer is not dependent on the physiological conditions of the transmitting tract. We designed a set of experiments to elucidate the biological function of PELPIII in the stylar IM. To study the function of the specific interaction between PELPIII proteins and the pollen tube wall, one of the PELPIII proteins (MG15) was ectopically expressed in pollen tubes and targeted to the tube wall. We also generated transgenic tobacco plants in which PELPIII proteins were silenced. In vitro bioassays were performed to test the influence of purified PELPIII on pollen tube growth, as compared to tobacco transmitting tissue-specific proteins (TTS) that were previously shown to stimulate pollen tube growth. The various tests described for activity of PELPIII proteins all gave consistent and mutually affirmative results: the biological function of PELPIII proteins is not directly related to pollen tube growth. These data show that similar stylar glycoproteins may act very differently on pollen tubes.  相似文献   

17.
Summary In incompatible (intramorph) pollinations of the heterostylousPrimula vulgaris, pollen germination or tube growth may be partially inhibited in several sites associated with the stigma or style. Blockage may occur, a) on the stigma surface through the failure of germination or of pollen tube penetration after germination, b) in the stigma head during the passage of the tube through the specialized transmitting tissue of the head, or c) in the transmitting tract of the style. None of the barriers is complete, and the prohibition of selfing or intramorph crossing depends upon the cumulative screening effect of one following upon the other. In both morphs, the germination of incompatible pollen on the stigma is enhanced in high ambient relative humidity, but many tubes still fail to penetrate the stigma. Those that do are retarded or blocked in their growth in the transmitting tissues of the stigma head and style. Crude extracts from the tissues of the stigma head and style show some differential effect on the growth of pollen tubesin vitro, and dialysates of extracts containing high molecular weight fractions show a consistent differential effect, those from thrum tissues retarding thrum tubes while having a lesser effect on pin tubes, and those from pin tissues retarding pin tubes while having lesser effect on thrum. It is suggested that the factors influencing tube growth are present in the intercellular secretions of the transmitting tract.  相似文献   

18.
It is well established that the actin cytoskeleton is absolutely essential to pollen germination and tube growth. In this study we investigated the effects of cytochalasin B (CB), which affects actin polymerization by binding to the barbed end of actin filaments, on apple (Malus pumila Mill.) pollen tube growth. Results showed that CB altered the morphology of pollen tubes, which had a larger diameter than control tubes beside inhibiting pollen germination and tube growth. Meantime CB also caused an abnormal distribution of actin filaments in the shank of the treated pollen tubes. Fluo-3/AM labeling indicated that the gradient of cytosolic calcium ([Ca2+]c) in the pollen tube tip was abolished by exposure to CB, which induced a much stronger signal in the cytoplasm. Cellulose and callose distribution in the tube apex changed due to the CB treatment. Immunolabeling with different pectin and arabinogalactan protein (AGP) antibodies illustrated that CB induced an accumulation of pectins and AGPs in the tube cytoplasm and apex wall. The above results were further supported by Fourier-transform infrared (FTIR) analysis. The results suggest the disruption of actin can result in abnormal growth by disturbing the [Ca2+]c gradient and the distribution of cell wall components at the pollen tube apex.  相似文献   

19.
During pollination the pollen tube grows into the style and toward the ovary via the transmitting tract. In lily the growth of pollen tubes involves tube cell adhesion to transmitting tract cells. We reported two molecules involved in this adhesion event. One is a pectic polysaccharide and the other, a 9 kDa basic protein named SCA for stigma/stylar cysteine-rich adhesin. SCA, which shows some identity with LTP (lipid transfer protein), was localized to the transmitting tract epidermis of the style where pollen tubes adhere. The present studies on the expression of SCA indicate that the protein has a similar expression pattern with LTP1 in Arabidopsis and that the protein is abundant in both the stigma and the style. For further proof of its role in pollen tube adhesion the activity of Escherichia coli-expressed protein has been studied in an in vitro adhesion assay system.  相似文献   

20.
BACKGROUND: and Aims Free-flowing surface exudates at the stigmatic (wet versus dry stigma) and adaxial epidermis at the site of angiospermy in carpels of Chloranthaceous species have been proposed to comprise a continuous extracellular matrix (ECM) operating in pollen tube transmission to the ovary. The aim of this research was to establish the spatial distribution and histo/immunochemical composition of the ECM involved in pollen tube growth in Sarcandra glabra and Chloranthus japonicus (Chloranthaceae). METHODS: Following confirmation of the pollen tube pathway, the histo/immunochemical make-up of the ECM was determined with histochemistry on fresh tissue to detect cuticle, esterase, proteins, pectins, and lipids and immunolocalization at the level of the TEM on sections from cryofixed/freeze-substituted tissue to detect molecules recognized by antibodies to homogalacturonans (JIM7, 5), arabinogalactan-proteins (JIM13) and cysteine-rich adhesion (SCA). KEY RESULTS: Pollen germinability is low in both species. When grains germinate, they do so on an ECM comprised of an esterase-positive cuticle proper (dry versus wet stigma). Pollen tubes do not track the surface ECM of stigma or adaxial epidermal cells at the site of angiospermy. Instead, tubes grow between stigmatic cells and subsequently along the inner tangential walls of the stigmatic and adaxial carpel cells at the site of angiospermy. Pollen tubes enter the ovary locule at the base of the funiculus. The stigmatic ECM is distinct by virtue of the presence of anti-JIM5 aggregates, lipids, and a protein recognized by anti-SCA. CONCLUSIONS: The Chloranthaceae joins a growing number of basal angiosperm taxa whereby pollen tubes germinate on a dry versus wet stigma to subsequently grow intercellularly en route to the ovary thereby challenging traditional views that the archetype pollen tube pathway was composed of the surface of stigma and adaxial epidermal cells covered with a free-flowing exudate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号