首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently many authors have reported that cathepsin L can be found in the nucleus of mammalian cells with important functions in cell‐cycle progression. In previous research, we have demonstrated that a cysteine protease (SpH‐protease) participates in male chromatin remodeling and in cell‐cycle progression in sea urchins embryos. The gene that encodes this protease was cloned. It presents a high identity sequence with cathepsin L family. The active form associated to chromatin has a molecular weight of 60 kDa, which is higher than the active form of cathepsin L described until now, which range between 25 and 35 kDa. Another difference is that the zymogen present in sea urchin has a molecular weight of 75 and 90 kDa whereas for human procathepsin L has a molecular weight of 38–42 kDa. Based on these results and using a polyclonal antibody available in our laboratory that recognizes the active form of the 60 kDa nuclear cysteine protease of sea urchin, ortholog to human cathepsin L, we investigated the presence of this enzyme in HeLa and Caco‐2 cells. We have identified a new nuclear protease, type cathepsin L, with a molecular size of 60 kDa, whose cathepsin activity increases after a partial purification by FPLC and degrade in vitro histone H1. This protease associates to the mitotic spindle during mitosis, remains in the nuclei in binuclear cells and also translocates to the cytoplasm in non‐proliferative cells. J. Cell. Biochem. 111: 1099–1106, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30–50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.  相似文献   

3.
The yolk proteins from the eggs of five species of thenemertean genus Lineus were analysed and theresulting data were used to define L. longissimus, L. sanguineus, L. lacteus, L. ruber, and L. viridis as distinct taxa (species to date). All fivespecies have at least one large (80–60 kDa) and onemedium sized (45–30 kDa) vitellin subunit, but thereare significant differences in the number and sizes ofthe molecular subunits. The large and medium sizedvitellin components of all the species areglycosylated, except for the 145 kDa protein of L. sanguineus. Rabbit antibodies to the L. lacteus vitellin subunits cross-reacted withthe vitellin subunits in the eggs of the otherspecies. The vitellin components of these five speciesof nemertean are very similar. Two species, L.ruber and L. viridis, lay their eggsin gelatinous masses, and the electrophoretic patternsof the jelly proteins show that the physicalconsistency of the jelly depends on molecular weightsof the components. The egg mass of L. viridis contains smaller proteins than the egg massof L. ruber. The repeatablespecies-specific patterns of vitellin componentsprovide a useful complement to the usual taxonomiccriteria.  相似文献   

4.
The yolk proteins from the eggs of five species of thenemertean genus Lineus were analysed and theresulting data were used to define L. longissimus, L. sanguineus, L. lacteus, L. ruber, and L. viridis as distinct taxa (species to date). All fivespecies have at least one large (80–60 kDa) and onemedium sized (45–30 kDa) vitellin subunit, but thereare significant differences in the number and sizes ofthe molecular subunits. The large and medium sizedvitellin components of all the species areglycosylated, except for the 145 kDa protein of L. sanguineus. Rabbit antibodies to the L. lacteus vitellin subunits cross-reacted withthe vitellin subunits in the eggs of the otherspecies. The vitellin components of these five speciesof nemertean are very similar. Two species, L.ruber and L. viridis, lay their eggsin gelatinous masses, and the electrophoretic patternsof the jelly proteins show that the physicalconsistency of the jelly depends on molecular weightsof the components. The egg mass of L. viridis contains smaller proteins than the egg massof L. ruber. The repeatablespecies-specific patterns of vitellin componentsprovide a useful complement to the usual taxonomiccriteria.  相似文献   

5.
Glycosylation of the murine erythropoietin receptor   总被引:1,自引:0,他引:1  
Murine erythropoietin-responsive Rauscher Red 5-1.5 cells were used to determine the contribution of glycosylation to the size and function of the erythropoietin receptor. The half life of the receptors was determined to be 4 h. The number of receptors was not significantly decreased in cells treated for 48 h with inhibitors of glycosylation (tunicamycin, glucosamine or swainsonine) and their affinity was slightly enhanced in tunicamycin- or glucosamine-treated cells. Erythropoietin was cross-linked with two proteins of 104 and 86 kDa. Their molecular masses were not significantly reduced in cells treated with the glycosylation inhibitors. When immunoprecipitated cross-linked receptors were digested with endoglycosidases, the molecular masses of both proteins were only slightly modified giving values of 100 and 82 kDa. Thus we can conclude that the proteins cross-linked to erythropoietin are very weakly glycosylated.  相似文献   

6.
7.
Recently, a novel enzyme, 1-O-acylceramide synthase (ACS), was purified and characterized from bovine brain. This enzyme has both calcium-independent phospholipase A(2) and transacylase activities. The discovery of this enzyme led us to propose a new pathway for ceramide metabolism in which the sn-2-acyl group of either phosphatidylethanolamine or phosphatidylcholine is transferred to the 1-hydroxyl group of ceramide. In this study, the partial amino acid sequences from the purified enzyme revealed that the enzyme contains amino acid sequences identical to those of human lecithin:cholesterol acyltransferase-like lysophospholipase (LLPL). The coding sequences of the mouse, bovine, and human genes were obtained from the respective kidney cDNAs by PCR. The open reading frames of LLPL were cloned into pcDNA3 to generate carboxyl-terminally tagged proteins. The expression of mouse LLPL in COS-7 cells demonstrated that transfected cells had higher transacylase and phospholipase A(2) activities than did non-transfected cells. Immunoprecipitation confirmed that LLPL had ACS activity. There were no significant lecithin:cholesterol acyltransferase and lysophospholipase activities in the mouse LLPL-transfected cells under either acidic or neutral conditions. Amino acid sequences from cDNAs of mouse, human, and bovine LLPLs demonstrated a signal peptide cleavage site, one lipase motif (AXSXG), and several N-linked glycosylation sites in each LLPL molecule. The replacement of serine with alanine in the lipase motif of mouse LLPL resulted in elimination of enzyme activity, indicating that the serine residue is part of the catalytic site. Deglycosylation of mouse, human, and bovine LLPLs yielded core proteins with a molecular mass of 42 kDa without change in enzyme activities. LLPL was post-translationally modified by signal peptide cleavage and N-linked glycosylation, and each mature LLPL had the same size core protein. Subcellular fractionation demonstrated that ACS activity co-localized with N-acetylglucosaminidase. Therefore, LLPL encodes a novel lysosomal enzyme, ACS.  相似文献   

8.
Kawai H  Ota T  Suzuki F  Tatsuka M 《Gene》2000,242(1-2):321-330
We screened clones for thioredoxin reductase genes with a degenerate PCR-based strategy and have isolated two novel cDNA clones from a mouse thymocyte cDNA library. These encode two distinct thioredoxin reductases (TrxR1 and TrxR2) with 499 and 527 amino acid (aa) residues and calculated molecular masses of 54.5 kDa and 56.8 kDa respectively. These proteins share 90% and 50% aa sequence identity with those of previously cloned human TrxR, containing the redox-active cysteines, FAD binding domain, and the selenocysteine (SeCys) insertion sequence, which is composed of a putative stem-loop sequence located in the 3'-untranslated region (UTR). TrxR2 showing less homology to human TrxR has a mitochondrial translocation signal and a mitochondrial prepeptide protease cleavage site in the N-terminal domain. Transient expression experiments of each gene as fusion proteins with Xpress-tagged protein in NIH 3T3 cells indicated that TrxR1 was localized in the nucleus and cytoplasm and TrxR2 in the mitochondria. Furthermore, we mapped the TrxR1 gene to chromosome 10 (placed 1.71 cR from D10Mit42, lod>3.0) and the TrxR2 gene to chromosome 16 (placed 22.56 cR from D16Mit34, lod>3.0). Thus, the mouse has at least two distinct nuclear genes for TrxR that have different translocation sites in the cell.  相似文献   

9.
2B4 (CD244) is a 66-kDa CD2 family protein expressed on natural killer (NK) cells. Mouse NK cells express two isoforms of 2B4, termed 2B4L and 2B4S, whose molecular masses are 42 kDa and 36 kDa, respectively. In this study, we biochemically characterize the 2B4 antigen that was newly found on mouse bone marrow-derived mast cells (BMMC). Anti-2B4 mAb immunoprecipitated glycoproteins with a molecular mass of 60 kDa from BMMC. Removal of N-linked sugars from the antigen by N-glycosidase F treatment yielded two protein backbones of 35 kDa and 25 kDa, indicating that BMMC express the 2B4S isoform, but not 2B4L. Nucleotide sequence analyses confirmed that BMMC transcribe 2B4S mRNA. The preferential expression of the 2B4S isoform and the detection of an additional 25-kDa glycoprotein on BMMC indicate that differences in the structure of 2B4 antigen exist between BMMC and NK cells.  相似文献   

10.
Human DNA polymerase epsilon is composed of a 261 kDa catalytic polypeptide and a 55 kDa small subunit of unknown function. cDNAs encoding the small subunit of human and mouse DNA polymerase epsilon were cloned. The predicted polypeptides have molecular masses of 59.469 and 59.319 kDa respectively and they are 90% identical. The human and mouse polypeptides show 22% identity with the 80 kDa subunit of the five subunit DNA polymerase epsilon from the yeast Saccharomyces cerevisiae. The high degree of conservation suggests that the 55 kDa subunit shares an essential function with the yeast 80 kDa subunit, which was earlier suggested to be involved in S phase cell cycle control in a pathway that is able to sense and signal incomplete replication. The small subunits of human and mouse DNA polymerase epsilon also show homology to the C-terminal domain of the second largest subunit of DNA polymerase alpha. The gene for the small subunit of human DNA polymerase epsilon (POLE2) was localized to chromosome 14q21-q22 by fluorescence in situ hybridization.  相似文献   

11.
We have characterized receptors for the insulin-like growth factor (IGF-I) on the mouse neuroblastoma cell line N18 as well as NG108, the hybrid cell line of N18 and rat glioma (C6). In this cell-free system, IGF-I and insulin stimulated the phosphorylation of 95-kDa and 105-kDa proteins. Using appropriate antibodies we were able to demonstrate that the IGF-I receptor beta subunit has two subtypes of 95 kDa and 105 kDa. On the other hand, insulin receptor beta subunit is a separate single 95-kDa protein. Enzymatic digestion of IGF-I receptor beta subunit subtypes by glycopeptidase F resulted in similar molecular masses (84 kDa and 86 kDa) on SDS-PAGE, which suggests that the difference in molecular masses between two subtypes is attributable to the differences in N-linked complex-type carbohydrate chains on the extracellular domain of beta subunits. This conclusion is further supported by peptides of similar molecular mass following staphylococcal V8 protease digestion. Analysis of IGF-I receptor beta subunit subtypes in these cells may provide insights into the mechanism of action of IGF-I on neural tissues.  相似文献   

12.
13.
Nonglycosylated murine and human granulocyte-macrophage colony-stimulating factor have a molecular mass of approximately 14.5 kDa predicted from the primary amino acid sequence. The expression of both proteins in COS cells leads to a heterogeneous population of molecules that differ in the degree of glycosylation. Both human and murine molecules contain two N-linked glycosylation sites that are situated in nonhomologous locations along the linear sequence. Despite this difference both proteins show a similar size distribution among the glycosylation variants. These studies analyze the effects of introducing in the murine protein novel N-linked glycosylation sites corresponding to those sites found in the human molecule. A panel of molecules composed of various combinations of human N-linked glycosylation sites in either the presence or the absence of murine N-linked glycosylation was compared. Substitution of a proper human N-linked glycosylation consensus sequence at Asn 24 did not result in N-linked glycosylation, nor was there any considerable effect on bioactivity. Replacement of the N-linked glycosylation consensus sequence at Asn 34 results in glycosylation similar to that found in the human molecule and causes a significant decrease in bioactivity. These data suggest that the position of N-linked glycosylation is critical for maximal bioactivity in a particular species and that the changes in position of these sites in different species probably occurred during evolution in response to changes in their receptors.  相似文献   

14.
Factor H is a 150-kDa serum glycoprotein with key regulatory functions in the alternative pathway of complement activation. Two glycoproteins with a molecular mass of approximately 42 and 37 kDa that react with an antiserum against factor H were purified from human plasma. The two glycoproteins have identical N-terminal amino acid sequences but differ in glycosylation. Sequence comparisons indicated that they both correspond to a 1.4-kb mRNA recently cloned from human liver cDNA. The serum concentration of the two glycoproteins together was estimated to be approximately 40 mg/liter. They were found not to exert factor H-like regulatory functions in the alternative pathway. Thus, the 42-kDa glycoprotein described here appears to be distinct from the previously characterized factor H-related protein of similar size, suggesting that human serum contains two factor-H related molecules which both have a molecular mass of 41 to 43 kDa but which differ largely in structure.  相似文献   

15.
Abstract: The apparent molecular masses of photoaffinity-labeled dopamine transporters (DATs) from rat, human, dog, and primate kidney COS cells expressing the rat DAT1 cDNA differ. Sequences predicted from cDNA cloning reveal only one amino acid difference between the length of the rat and human DAT but one less site for potential N-linked glycosylation in the human DAT. Possible posttranslational and postmortem bases for species differences in DAT molecular mass were explored. Rat DAT proteins from striata subjected to ∼5 h of postmortem delay modeled after the human postmortem delay process revealed small but consistent losses in apparent molecular mass and in cocaine analogue binding; the DAT molecular mass displayed no further losses for up to 30 h of model postmortem treatment. Degradative postmortem changes could thus contribute to molecular mass differences between rat and human DATs. Neuraminidase treatment reduced the apparent molecular mass of native rat DAT but not that of the rat DAT expressed in COS cells, suggesting that the sugars added to the DAT expressed in COS cells were different than those added to the rat brain striatal transporter. These differences could account for the somewhat higher Km values for expressed DAT cDNA in COS cells when compared with the wild-type striatal transporter. These results are in accord with the differences in number of predicted N-linked glycosylation sites between rat and human DATs and with cell-type specificity in transporter posttranslational processing.  相似文献   

16.
Rabbit alpha 1-microglobulin was purified from the urine of sodium-chromate-treated animals by the use of gel chromatography on Sephadex G-100, affinity chromatography on concanavalin-A--Sepharose and ion-exchange chromatography on DEAE-Sephadex. Rabbit alpha 1-microglobulin had a molecular mass of 25.6 kDa on SDS/polyacrylamide gel electrophoresis. Alpha 1-microglobulin has previously been purified from the urine of humans, guinea-pigs and rats by similar methods, and the molecular masses of the four homologues were compared by SDS/polyacrylamide gel electrophoresis and gel chromatography in a denaturing medium. By these two methods the human homologue was 6 kDa and 3 kDa larger, respectively, than the other three proteins. Endoglycosidase F digestion of alpha 1-microglobulin, followed by SDS/polyacrylamide gel electrophoresis, revealed three protein bands in the human alpha 1-microglobulin sample, and only two bands in guinea-pig, rat and rabbit alpha 1-microglobulin, with a gap between each band of 2.6--2.9 kDa. The amino-terminal amino acid sequences of the four homologues were determined and between 72% and 81% homology was seen. The five amino-terminal amino acids present in the other species were missing in guinea-pig alpha 1-microglobulin. Our results indicate that human alpha 1-microglobulin is substituted with two N-linked oligosaccharides, while only one is attached to each of the other alpha 1-microglobulins, and that the extra glycosylamine-linked oligosaccharide in the human protein is attached to asparagine in position 17. Finally it is shown that all four homologues inhibit antigen stimulation of human lymphocytes, a finding which is consistent with our previous suggestion that the N-linked oligosaccharides carry the immunosuppressive activity of alpha 1-microglobulin.  相似文献   

17.
We have shown that enzymatic removal of N-linked glycans from human immunodeficiency virus type 1 (HIV-1) recombinant envelope glycoproteins gp160 and gp120 produced in BHK-21 cells did not significantly reduce their ability to bind to CD4, the cellular receptor for the virus. Because recombinant proteins may behave differently from proteins present on virions, we investigated whether such viral envelope glycoproteins either in a purified form or present on viral particles could be deglycosylated by treatment with an endoglycosidase F-N-glycanase mixture which cleaves all accessible glycan moieties. Endoglycosidase analysis of the carbohydrate composition of purified viral gp120 (vgp120) indicated a glycosylation pattern similar to that for recombinant gp120 (rgp120), and treatment with endoglycosidase F-N-glycanase resulted in comparable molecular weight (MW) reduction for both molecules. Similarly, after immunoblotting of the deglycosylated viral preparation, the characteristic 160- and 120-kilodalton (kDa) bands were replaced by 90- and 60-kDa bands, respectively. The apparent MW of gp41 shifted to 35 kDa. These results are consistent with complete deglycosylation. The immunoreactive conformation of envelope glycoproteins remained unaltered after deglycosylation: they were recognized to the same extent by specific human polyclonal or mouse monoclonal antibodies, and no proteolysis of viral proteins occurred during enzymatic treatment. Deglycosylation of vgp120 resulted in a less than 10-fold reduction of the ability to bind to CD4, presented either in a soluble form or at the cell membrane. In addition, deglycosylation significantly reduced, but did not abolish, HIV-1 binding to and infectivity of CD4+ cells as determined, respectively, by an indirect immunofluorescence assay and a quantitative dose-response infection assay. Taken together, these results indicate that removal of glycans present on mature envelope glycoproteins of HIV-1 diminishes but does not abolish either virus binding to CD4 or its capacity to infect CD4+ cells.  相似文献   

18.
Mulero JJ  Yeung G  Nelken ST  Bright JM  McGowan DW  Ford JE 《Biochemistry》2000,39(42):12924-12928
Nucleotides are involved in regulating a number of important processes ranging from inflammation to platelet aggregation. Enzymes that can modulate levels of nucleotides in the blood therefore represent important regulatory components in these physiological systems. CD39L4 is a soluble E-nucleoside triphosphate dephosphohydrolase (E-NTPDase) with specificity for nucleotide diphosphates (NDPs). In this study, stable mammalian and insect cell lines were generated expressing CD39L4 protein to purify and characterize the recombinant protein. We demonstrate that recombinant CD39L4 protein expressed in human embryonic carcinoma 293 cells is glycosylated by comparing the molecular masses before and after glycosidase treatment. Activity measurements of CD39L4 isolated from tunicamycin-treated, transiently transfected COS-7 cells indicate that glycosylation is not required for full ADPase activity. Recombinant human CD39L4 protein isolated from stable insect cells was glycosylated differently, but also demonstrated relative activity comparable to that of the mammalian protein. When denatured by SDS under nonreducing conditions, a fraction of the CD39L4 protein migrates as a 110 kDa disulfide-linked dimer. We determined that the monomer is the most active form of CD39L4 by measuring the activity of sucrose density gradient fractions of monomers and partially purified dimers. The physiological significance of the biochemical and enzymatic characterization is discussed.  相似文献   

19.
Treatment of Ehrlich ascites-tumour (EAT) cells with interferon (IFN) abolished their ability to secrete a 32 kDa protein that was secreted by growing EAT cells. These IFN-treated cells secreted two proteins (molecular masses 100 and 89 kDa as estimated by SDS/polyacrylamide-gel electrophoresis) that were not detected in two-dimensional gel electrophoresis of the culture fluid of untreated EAT cells. The sequence of 20 amino acids from the N-terminal end of the 32 kDa protein was very similar to portions of sequences of mouse proviral gag proteins.  相似文献   

20.
Indo-Gen mediated surface labelling with125I demonstrated differences in surface oriented antigens between virulent and virulent promastigote ofLeishniania donovani, In case of virulent strains, surface polypeptides with molecular masses of 63, 53, 42 and 38 kDa were found to be labelled with125I whereas in the case of aviralent stains 68, 55, 50, 46, 42 and 33 Da, components were iodinated. Further studies by immunoblot assay using different subcellular fractions of virulent and avirulent parasites demonstrated that antibody raised against gp63 cross-reacted with the 63 and 60 kDa antigen of the virulent and avirulentLeishmania donovani strains of Indian origin respectively. It indicates that these two polypeptides are antigenically similar. When virulent and avirulent cells were grown in the presence of varying concentration of tunicarnycin and immunoblot with anti gp63, it was observed that with increasing concentration of tunicamycin the 63 kDa polypeptide of the virulent cells shifted to approximately 58–57 kDa and the 60 kDa polypoptide of the aviruleni cells shifted to 57 kDa. This suggests that glycosylation may play an important role in antigenic variation between virulent and avirulent parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号