首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary— The effects of vitamin D on the intramuscular distribution of total and bound calcium, phosphate and on available cytosolic calcium, were investigated in skeletal muscle. Total calcium and phosphorus were measured on ashed subcellular fractions of muscles from vitamin D-repleted and vitamin D-deprived rats. The variations in available calcium were followed by determining the activities of calcium-sensitive enzymes in isolated cytosol. Bound-calcium was revealed ultra-microscopically by pyroantimonate. In vitamin D-repleted muscles, the pyroantimonate method revealed specific areas of intense bound-calcium deposition: the myofibrils, where they formed pronounced lines parallel to the Z-bands. In vitamin D-deficient muscles, the calcium-pyroantimonate deposits appeared clearly reduced. This loss was accompanied by a marked reduction in total calcium and phosphorus in all the subcellular fractions, as compared to vitamin D-repleted muscles. Unexpectedly, the activity of the Ca2+-activated isocitrate-dehydrogenase was increased in the cytosol, while that of the Ca2+-inhibited pyruvate-kinase decreased. Prolonged vitamin D-administration to vitamin D-repleted rats led to an intensification of calcium-pyroantimonate deposits and a general increase in total calcium and phosphorus, but no change in the cytosolic Ca2+-sensitive enzyme activities. Cessation of vitamin D-administration to vitamin D-repleted rats produced a regression of calcium-pyroantimonate deposits, a general decrease of total calcium and phosphate levels, and stimulation of the Ca2+-activated isocitrate-dehydrogenase accompanied by lowering of the Ca2+-inhibited pyruvate-kinase. The results clearly indicate a correlation between vitamin D-repletion and the total and bound calcium content of skeletal muscle. In addition, they demonstrate an apparent contradiction between the decrease of total and bound calcium, and the activities of cytosolic Ca2+ sensitive enzymes during vitamin D-deprivation, which can only be explained by an increase in available calcium. It is suggested that vitamin D stimulates intramuscular mechanisms tending to lower available calcium by inactivating the cation via the formation of calcium chelates.  相似文献   

2.
Electron microscopic evidence is presented that the early response to denervation ("simple atrophy") of the semitendinosus m. of the frog is characterized by a greater prominence of the sarcoplasmic reticulum and by the presence, in the interfibrillar spaces, of mitochondria which are more numerous and smaller than in normal muscle. In contrast with the dynamic changes of the sarcoplasmic structural components, the myofibrils showed a progressive decrease in diameter after denervation and throughout the period studied. By carrying out tissue fractionation experiments, the yield of microsome-protein was found significantly greater in the denervated muscles, as compared with the contralateral controls, in this initial stage. Under the conditions attending the overdevelopment of the sarcoplasmic reticulum (SR), denervated semitendinosus m. incorporated valine-C14 into proteins more actively than the control pairs. The denervated muscles also showed an increase in the number of freely scattered and membrane-bound ribosomes and of polyribosomes, suggesting a more active synthesis of the SR membranes. Pronounced atrophy of the myofibrils, disorganization of the SR, and an increased number of ribonucleoprotein particles lying in the enlarged interfibrillar spaces were the main ultrastructural features of "degenerative atrophy" in frog muscle in the late periods after denervation. The probably adaptive character of the early changes occurring on denervation of frog muscle is discussed.  相似文献   

3.
The influence of caffeine on the intracellular distribution of calcium in the frog sartorius muscle was studied by differential centrifugation in an attempt to identify the locus of action of this alkaloid. The problem was approached in two ways. In the first, the locus of action was sought by relating the kinetic functions of 45Ca washout curves of muscles to changes in the distribution of 45Ca in the isolated fractions from the same muscles. It was not possible to make any correlation of the 45Ca-washout curves to the activity in the fractions; the relative distribution of this nuclide remained essentially unchanged at 1-, 2-, and 3-hour intervals along the curve. The washout curves appear to be the net effect of a complex interaction of the calcium in pools containing both readily exchangeable calcium and calcium which has a slow exchange or turnover rate. The second approach centered upon the examination of the effect of caffeine on the intracellular distribution of 45Ca and of calcium among the cellular fractions. Caffeine treatment resulted in a distinct increase in the calcium content of the mitochondrial fraction and a decrease in the calcium of the microsomal fraction. Electron micrographic studies revealed significant morphological changes in the whole muscle and in the isolated mitochondrial fraction after the muscle had been exposed to caffeine in a concentration producing irreversible contracture or rigor (10 mM). The increase in calcium content of the mitochondrial fraction after caffeine treatment may be due to an actual accumulation of calcium by the mitochondria or may be the consequence of the appearance of granular vesicles in the fraction.  相似文献   

4.
Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.  相似文献   

5.
The distribution and ultrastructure of myotomal muscle fibres was studied in larvae and early juveniles of the curimatã-pacú Prochilodus marggravii , a tropical freshwater fish endemic to the São Francisco River system, Brazil. At 26°C, larvae hatched 15 h post-fertilization at a relatively early stage of development with the head still curved around the yolk-sac (head-trunk angle greater than 45°), and prior to pigmentation of the eyes and formation of the jaws, gut and pectoral fins. Although motile the swimming muscles of newly-hatched larvae were largely undifferentiated. The myotomes were made up of a single layer of superficial muscle fibres containing six to eight myofibrils and abundant mitochondria, surrounding an inner core of myoblasts, myotubes and immature muscle fibres. The volume densities of mitochondria and myofibrils in the immature inner muscle fibres of 1-day-old lavae were 14.5 and 6.4% respectively. The body axis straightened within 24 h of hatching and the yolk sac was completely absorbed by 72 h. Larval development was rapid with gill filaments, a muscular stomach, liver and swimbladder present after 7 days. The inner muscle fibres were well differentiated in 7-day-old larvae; the volume density of myofibrils had increased to 63.1% whereas the volume density of mitochondria had decreased to 3.5%. In 14-day-old juveniles the superficial muscle had thickened to a layer two to three fibres thick in the region of the lateral line nerve and capillaries were present in the inner muscle. Muscle growth until 14 days was largely due to the hypertrophy of the fibres present at hatching.  相似文献   

6.
The fine structure of the principal and ancillary metathoracic flight muscle fibres in the adult male of a strepsipteran, Elenchus tenuicornis, is described. Power-producing dorsal longitudinal and dorso-ventral flight muscles show features consistent with myoneural asynchrony: myofibrils are large and discrete and are separated by large closely packed mitochondria; the sarcoplasmic reticulum is very reduced but engages with T-system membranes in dyads at the mid-sarcomere H-band level. With respect to other asynchronous insect flight muscles, the fibres of Elenchus are anomalous (i) in the small fibre diameter, (ii) in the variable contour of the myofibrils and (iii) in the absence of tracheolar invagination. The functional significance of these structural features is discussed. Ancillary metathoracic muscles are structurally comparable with other synchronous fibres in possessing an extensive SR compartment. Structural evidence for asynchrony in the flight mechanism of Strepsiptera is considered in the context of the evolution of this mechanism throughout the insect Orders.  相似文献   

7.
Vinculin is a major cytoskeletal component in striated muscle, where it has been reported to form a rib-like structure between the cell membrane and the Z-disk termed a costamere. This arrangement of vinculin has been purported to be involved in the alignment of the myofibrils. However, the three-dimensional arrangement of vinculin in relation to the Z-disk of the myofibril was not known. In the present study, we examined the distribution of vinculin in striated muscle with monospecific antibodies using immunofluorescence and laser scanning confocal microscopy. Isolated cardiac and skeletal muscle cells from a variety of species, tissue sections, and neonatal myocytes with developing myofibrils were examined. Optical sectioning in the X-Y and X-Z planes demonstrated that vinculin immunoreactivity was heaviest at the periphery of the cell; however, the immunoreactivity was also distributed within the Z-disk although at a relatively reduced level. This distribution is potentially significant in understanding the physiological significance of vinculin in striated muscle function and in myofibrillogenesis.  相似文献   

8.
Gelsolin was localized by immunoelectron microscopy in fast and slow cross-striated muscles of the lobster Homarus americanus. When ultrathin sections of the muscles were labelled with anti-gelsolin and a gold-conjugated second antibody, 90% of all gold particles in the myoplasm were detected on myofibrils, preferentially in the I-band and AI-region of the sarcomeres. Both the region of the H-zone (lacking thin filaments) and the Z-disc contained no or little gold label. Under physiological conditions, a close association of gelsolin with the thin filaments was observed for both muscle types. The preferential localization of particles in the I- and AI-region indicated that gelsolin was distributed randomly over the whole length of the thin filaments. Preincubation of muscle strips with Ringer solution containing 0.5 mM EGTA resulted in a significantly different distribution pattern; gold particles were now localized preferentially in the cell periphery close to the sarcolemma, with significantly decreased abundance in the centre of the cell. Compared with the muscle under physiological conditions, the number of gold particles over sarcomeric structures was significantly reduced. Thus, binding of gelsolin to the thin filaments is apparently reversible in vivo and depends on the presence of calcium ions. We assume a functional role for gelsolin in the actin turnover processes in invertebrate muscle systems.  相似文献   

9.
The somitic level of origin of embryonic chick hindlimb muscles   总被引:1,自引:0,他引:1  
Studies of avian chimeras made by transplanting groups of quail somites into chick embryos have consistently shown that the muscle cells of the hindlimb are derived from the adjacent somites, however, the pattern of cell distribution from individual somites to individual hindlimb muscles has not been characterized. I have mapped quail cell distribution in the chick hindlimb after single somite transplantation to determine if cells from an individual somite populate discrete limb muscle regions and if there is a spatial correspondence between a muscle's somitic level of origin and the known spinal cord position of its motoneuron pool. At stages 15-18 single chick somites or equivalent lengths of unsegmented somitic mesoderm adjacent to the prospective hindlimb region were replaced with the corresponding tissue from quail embryos. At stages 28-34, quail cell distribution was mapped within individual thigh muscles and shank muscle regions. A quail-specific antiserum and Feulgen staining were used to identify quail cells. Transplants from somite levels 26-33 each gave rise to consistent quail cell labeling in a unique subset of limb muscles. The anteroposterior positions of these subsets corresponded to that of the transplanted somitic tissue. For example, more anterior or anteromedial thigh muscles contained quail cells when more anterior somitic tissue had been transplanted. For the majority of thigh muscles studied and for shank muscle groups, there was also a clear correlation between somitic level of origin and motoneuron pool position. These data are compatible with the hypothesis that motoneurons and the muscle cells of their targets share axial position labels. The question of whether motoneurons from a specific spinal cord segment recognize and consequently innervate muscle cells derived from the same axial level during early axon outgrowth is addressed in the accompanying paper (C. Lance-Jones, 1988, Dev. Biol. 126, 408-419). Quail cell distribution was also mapped in chick embryos in which quail somites or unsegmented mesoderm had been placed 2-3 somites away from their position of origin. In all cases donor somitic tissues contributed to muscles in accord with their host position. These results indicate that muscle cell precursors within the somites are not specified to migrate to a predetermined target region.  相似文献   

10.
The localization of parvalbumin in fish white muscle and of the calcium binding protein, of arginine kinase and of glycogen phosphorylase in crayfish tail muscle have been investigated by immunofluorescence using isolated myofibrils and muscle sections as starting materials. It is shown that the four proteins appear to be localized on the thin filaments when myofibrils are used as starting material. This result contrasts with previous observations where it appeared that parvalbumin in fish muscle and arginine kinase in crayfish muscle were distributed uniformly within the cell. This discrepancy is discussed in relation to the high solubility of these proteins. In the light of the present knowledge about striated muscles from these two organisms, it seems that the roles of parvalbumin in fish and of the calcium binding protein in crayfish are probably different.  相似文献   

11.
Comparative aspects of cardiac and skeletal muscle sarcoplasmic reticulum.   总被引:1,自引:0,他引:1  
While differing in numerous physiological and biochemical parameters, mammalian cardiac and skeletal muscles exhibit many common ultrastructural characteristics. General subcellular organization is similar with longitudinal disposition and organization of the myofibrils as well as subcellular organelles such as mitochondria, sarcoplasmic reticulum and transverse tubules. Significant differences are more readily discerned in terms of degree, not only with respect to relative amounts of various organelles, but also in regard to membrane composition. It is these macromolecular variations in membrane components which may, at least in part, provide the basis for differences in overall functional characteristics in the muscles.In cardiac, as well as skeletal muscle, the concentration of Ca2+ ions at specific intracellular sites regulates the contractile state of the muscle. The differences in mechanism and sources of Ca2+ for contraction in cardiac and skeletal muscle are but a few of the unsolved areas which are now being addressed. We shall focus primarily on research advances involving cardiac and skeletal SR emphasizing the contrasting features related to their functional roles in control of contraction and metabolic events.  相似文献   

12.
《The Journal of cell biology》1984,98(6):1961-1972
Antibodies against chicken erythrocyte vimentin and gizzard desmin were affinity purified and then cross-absorbed with the heterologous antigen. They were used to study the in vivo distributions of these proteins in developing and mature myotubes by immunofluorescence microscopy of 0.5-2-micron frozen sections of iliotibialis muscle in 7- 21-day chick embryos, neonatal and 1-d postnatal chicks, and adult chickens. The distributions of vimentin and desmin were coincidental throughout the development of myotubes, but the concentration of vimentin was gradually reduced as the myotubes matured and became largely undetectable at the time of hatching. The process of confining these proteins to the level of Z line from the initial uniform distribution occurred subsequent to the process of bringing myofibrils into lateral registry: in-register lateral association of several myofibrils was occasionally seen as early as in 7-11-d embryos, whereas the cross-striated immunofluorescence pattern of desmin and vimentin was only vaguely discerned in myotubes of 17-d embryos, just 4 d before hatching. In some myotubes of 21-d embryos, myofibrils were in lateral registry as precisely as in adult myofibers but desmin was still widely distributed around Z line in an irregular manner. Nevertheless, in many other myotubes of prenatal or neonatal chicks, desmin became confined to the level of Z line in a manner similar to that seen in adult myofibers, thus essentially completing its redistribution to the confined state of adult myofibers in coincidence with the time of hatching. In extracts from iliotibialis and posterior latissimus dorsi muscles of adult chickens, we detected a hitherto unidentified protein that was very similar to vimentin in molecular weight but did not react with our antivimentin antibody. We discuss the possibility that this protein was confused with vimentin in the past.  相似文献   

13.
The effect of colchicine on myogenesis in vivo has been studied in the regenerating tadpole tail of the frog, Rana pipiens, and in the abdominal molting muscles of a blood-sucking bug, Rhodnius prolixus Stål. Colchicine is shown to disrupt microtubules in the differentiating muscle cells of both these organisms. The disruption of microtubules is correlated with a loss of longitudinal anisometry in the myoblasts and myotubes of the regeneration blastema in the tadpole tail. Before colchicine treatment, the myotubes contain longitudinally oriented myofibrils. After colchicine treatment, rounded, multinucleate myosacs containing randomly oriented myofibrils are present. It is suggested that the primary function of microtubules in myogenesis in the Rana pipiens tadpole is the maintenance of cell shape. The abdominal molting muscles of Rhodnius undergo repeated phases of differentiation and dedifferentiation of the sarcoplasm. However, the longitudinal anisometry of the muscle fibers is maintained in all phases by the attachments of the ends of the fibers to the exoskeleton, and microtubule disruption does not alter cell shape. The orientation of the developing myofibrils is also unaltered, indicating that the microtubules do not directly align or support the myofibrils in this system.  相似文献   

14.
Summary Primary cultures ofDrosophila gastrula stage embryonic cells will divide and terminally differentiate into morphologically recognizable neurons and muscles. The phenotypically mixed nature of this primary culture system has made it difficult to effectively analyze various parameters of cell growth and differentiation for individual cell types. We report here a simple and economic method to separate early embryonic precursors for different cell types, using a shallow linear reorienting Ficoll gradient at unit gravity. The separated cells were collected into fractions, cultured, and analyzed for their growth and differentiation patterns. The larger and denser cells of the first fractions differentiated to yield pure neuronal cultures, as judged by morphologic, immunologic, and biochemical criteria. Cells in the last fractions differentiated into a predominantly muscle-enriched cell population, which also contained a very small percentage of neurons morphologically distinct from those in the pure neuronal fractions. Approximately 35% of the early gastrula stage embryonic cells differentiate into neuronal cells, and 65% of the non-neuronal lineage cells later develop into predominantly muscle population. The method is highly reproducible, can process 3×107 cells per procedure, and the recovery is >90% of the input cells. The separated cells are suitable for cell biological analyses as well as for biochemical and molecular studies of neuron and muscle precursors. Deceased.  相似文献   

15.
In order to complete preliminary investigations on the subcellular calcium localisation in smooth muscle cells, further experiments are presented using smooth muscle cells from the coronary artery of the pig. The methods used were a precipitation technique using potassium oxalate and autoradiography using 45Ca. In all cases we were able to reproduce the results obtained in our preliminary study. The preparations clearly show calcium oxalate precipitates in the cell membrane, the sarcoplasmic reticulum, the microvesicles, mitochondria and the nucleus membrane. These findings were supported by silver grain distributions in autoradiograms obtained by means of 45Ca. The qualitative results obtained histochemically are in good agreement with estimations of the calcium distribution in subcellular fractions obtained by atomic absorption spectrophotometry.  相似文献   

16.
In this study radioimmunoassay, immunohistochemistry, Northern blot analysis, and a gel overlay technique have been used to examine the level, subcellular distribution, and potential target proteins of the S100 family of calcium-modulated proteins in adult and developing rat skeletal muscles. Adult rat muscles contained high levels of S100 proteins but the particular form present was dependent on the muscle type: cardiac muscle contained exclusively S100 alpha, slow-twitch skeletal muscle fibers contained predominantly S100 alpha, vascular smooth muscle contained both S100 alpha and S100 beta, and fast-twitch skeletal muscle fibers contained low but detectable levels of S100 alpha and S100 beta. While the distribution of S100 mRNAs paralled the protein distribution in all muscles there was no direct correlation between the mRNA and protein levels in different muscle types, suggesting that S100 protein expression is differentially regulated in different muscle types. Immunohistochemical analysis of the cellular distribution of S100 proteins in adult skeletal muscles revealed that S100 alpha staining was associated with muscle cells, while S100 beta staining was associated with nonmuscle cells. Radioimmunoassays of developing rat skeletal muscles demonstrated that all developing muscles contained low levels of S100 alpha at postnatal day 1 and that as development proceeded the S100 alpha levels increased. In contrast to adult muscle S100 alpha expression was confined to fast-twitch fibers in developing skeletal muscle until postnatal day 21. At postnatal day 1, developing contractile elements were S100 alpha positive, but no staining periodicity was detectable. At postnatal day 21, S100 alpha exhibited the same subcellular localization as seen in the adult: colocalization with the A-band and/or longitudinal sarcoplasmic reticulum. Comparison of the S100 alpha-binding protein profiles in fast- and slow-twitch fibers of various species revealed few, if any, species- or fiber type-specific S100 binding proteins. Isolated sarcoplasmic reticulum fractions and myofibrils contained multiple S100 alpha-binding proteins. The colocalization of S100 alpha and S100 alpha-binding proteins with the contractile apparatus and sarcoplasmic reticulum suggest that S100 alpha may regulate excitation and/or contraction in slow-twitch fibers.  相似文献   

17.
The Location of Muscle Calcium with Respect to the Myofibrils   总被引:6,自引:1,他引:5  
Autoradiographs have been prepared from frog toe muscles soaked in Ca45 and fixed with an osmium-oxalate solution. A majority of the grains over the A bands were over the myofibrils. The grain density over the I bands was greatest over the space between the myofibrils. The significance of this distribution is discussed in the light of previous information about the longitudinal distribution of Ca45 in skeletal muscle.  相似文献   

18.
Summary The fibers of drum and trunk muscles of the Tigerfish, Therapon jarbua, differ greatly in diameter. The myofibrils of the trunk muscles are irregularly oriented, while those of the drum muscles are rolled into spiral or concentric bands. Both muscle types possess the sarcomere structure typical of cross-striated musculature. However, the myofibrils of the drum muscles differ greatly in sarcomere length and width from those in the trunk musculature. The trunk muscles contain few mitochondria, whereas in the drum muscles mitochondria are abundant. The sarcoplasmic reticulum (SR) of the drum muscles takes the form of elongated tubes in both the A and the I region; that of the trunk musculature consists of small vesicles. Of the two muscle types, the drum muscle contains more SR. With respect to the form of the T system, the trunk musculature is of the Z type and the drum muscles of the A-I type. The drum muscle displays a considerably greater number of motor endplates; these lack typical junctional folds and have mitochondria with very few cristae. No fat could be demonstrated in either the drum or the trunk muscles. However, the concentration of glycogen is higher in the drum muscle than in the musculature of the trunk.This work was accomplished with support from the Deutsche Forschungsgemeinschaft and is gratefully dedicated to Prof. R. Danneel on the occasion of his 75th birthday.  相似文献   

19.
In an effort to more clearly elucidate the role of cellular structures as calcium sinks and sources in smooth muscle cells, the intracellular distribution of radioactive calcium was evaluated by a new method based on freeze-drying. The guinea pig vas deferens was exposed to a physiological salt solution that contained 45Ca. The muscle was then freeze-dried and prepared for electron microscope autoradiography. The grain density over the plasma membrane, mitochondria, and sarcoplasmic reticulum (SR) was significantly greater than that of the matrix. These results suggest that the plasma membrane, mitochondria and SR have the capacity to accumulate calcium. Which of these structures serve as a source of calcium for contraction remains to be determined. A stereological comparison between freeze-dried and conventionally prepared smooth muscles revealed several differences. The cross- sectional area of freeze-dried cells was about twice that of conventionally prepared cells. Moreover, mitochondria and sub-surface vesicles occupied a significantly smaller percentage of the cell in the freeze-dried tissue than they did in the conventionally prepared tissue.  相似文献   

20.
A Ca2+-activated proteolytic enzyme 1 that partially degrades myofibrials was isolated from hind limb muscles of normal rabbits and rabbits undergoing rapid muscle atrophy as a result of vitamin E deficiency. Extractable Ca2+-activated protease activity was 3.6 times higher in muscle tissue from vitamin E-deficient rabbits than from muscle tissue of control rabbits. Ultrastructural studies of muscle from vitamin E-deficient rabbits showed that the Z disk was the first myofibrillar structure to show degradative changes in atrophying muscle. Myofibris prepared from muscles vitamin E-deficient rabbits showed partial or complete loss of Z-disk density. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that the amount of troponin-T (37 000 daltons) and α-actinin (96 000 daltons) was reduced in myofibrils from atrophying muscle as compared to myofibrils prepared from control muscle. In vitro treatment of purified myofibrils with purified Ca2+-activated proteolytic enzyme produced alterations in myofibrillar ultrastructure that were identical to the initial alterations occuring in myofibrils from atrophying muscle (i.e. weakening and subsequent removal of Z disks). Additionally the electrophoretic banding pattern of Ca2+-activated proteolytic enzyme-treated myofibrils is very similar to that of myofibrils prepared from muscles atrophying as a result of nutritional vitamin E deficiency. The possible role of Ca2+-activated proteolytic enzyme in disassembly and degradation of the myofibril is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号