首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effectiveness of sequence alignment in detecting structural homology among protein sequences decreases markedly when pairwise sequence identity is low (the so‐called “twilight zone” problem of sequence alignment). Alternative sequence comparison strategies able to detect structural kinship among highly divergent sequences are necessary to address this need. Among them are alignment‐free methods, which use global sequence properties (such as amino acid composition) to identify structural homology in a rapid and straightforward way. We explore the viability of using tetramer sequence fragment composition profiles in finding structural relationships that lie undetected by traditional alignment. We establish a strategy to recast any given protein sequence into a tetramer sequence fragment composition profile, using a series of amino acid clustering steps that have been optimized for mutual information. Our method has the effect of compressing the set of 160,000 unique tetramers (if using the 20‐letter amino acid alphabet) into a more tractable number of reduced tetramers (~15–30), so that a meaningful tetramer composition profile can be constructed. We test remote homology detection at the topology and fold superfamily levels using a comprehensive set of fold homologs, culled from the CATH database that share low pairwise sequence similarity. Using the receiver‐operating characteristic measure, we demonstrate potentially significant improvement in using information‐optimized reduced tetramer composition, over methods relying only on the raw amino acid composition or on traditional sequence alignment, in homology detection at or below the “twilight zone”. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
It is generally accepted that many different protein sequences have similar folded structures, and that there is a relatively high probability that a new sequence possesses a previously observed fold. An indirect consequence of this is that protein design should define the sequence space accessible to a given structure, rather than providing a single optimized sequence. We have recently developed a new approach for protein sequence design, which optimizes the complete sequence of a protein based on the knowledge of its backbone structure, its amino acid composition and a physical energy function including van der Waals interactions, electrostatics, and environment free energy. The specificity of the designed sequence for its template backbone is imposed by keeping the amino acid composition fixed. Here, we show that our procedure converges in sequence space, albeit not to the native sequence of the protein. We observe that while polar residues are well conserved in our designed sequences, non-polar amino acids at the surface of a protein are often replaced by polar residues. The designed sequences provide a multiple alignment of sequences that all adopt the same three-dimensional fold. This alignment is used to derive a profile matrix for chicken triose phosphate isomerase, TIM. The matrix is found to recognize significantly the native sequence for TIM, as well as closely related sequences. Possible application of this approach to protein fold recognition is discussed.  相似文献   

3.
4.
An algorithm is presented for the multiple alignment of protein sequences that is both accurate and rapid computationally. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, two sequences are aligned, then the third sequence is aligned against the alignment of both sequences one and two. Similarly, the fourth sequence is aligned against one, two and three. This is repeated until all sequences have been aligned. Iteration is then performed to yield a final alignment. The accuracy of sequence alignment is evaluated from alignment of the secondary structures in a family of proteins. For the globins, the multiple alignment was on average 99% accurate compared to 90% for pairwise comparison of sequences. For the alignment of immunoglobulin constant and variable domains, the use of many sequences yielded an alignment of 63% average accuracy compared to 41% average for individual variable/constant alignments. The multiple alignment algorithm yields an assignment of disulphide connectivity in mammalian serotransferrin that is consistent with crystallographic data, whereas pairwise alignments give an alternative assignment.  相似文献   

5.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.  相似文献   

6.
Finding structural similarities between proteins often helps reveal shared functionality, which otherwise might not be detected by native sequence information alone. Such similarity is usually detected and quantified by protein structure alignment. Determining the optimal alignment between two protein structures, however, remains a hard problem. An alternative approach is to approximate each three-dimensional protein structure using a sequence of motifs derived from a structural alphabet. Using this approach, structure comparison is performed by comparing the corresponding motif sequences or structural sequences. In this article, we measure the performance of such alphabets in the context of the protein structure classification problem. We consider both local and global structural sequences. Each letter of a local structural sequence corresponds to the best matching fragment to the corresponding local segment of the protein structure. The global structural sequence is designed to generate the best possible complete chain that matches the full protein structure. We use an alphabet of 20 letters, corresponding to a library of 20 motifs or protein fragments having four residues. We show that the global structural sequences approximate well the native structures of proteins, with an average coordinate root mean square of 0.69 Å over 2225 test proteins. The approximation is best for all α-proteins, while relatively poorer for all β-proteins. We then test the performance of four different sequence representations of proteins (their native sequence, the sequence of their secondary-structure elements, and the local and global structural sequences based on our fragment library) with different classifiers in their ability to classify proteins that belong to five distinct folds of CATH. Without surprise, the primary sequence alone performs poorly as a structure classifier. We show that addition of either secondary-structure information or local information from the structural sequence considerably improves the classification accuracy. The two fragment-based sequences perform better than the secondary-structure sequence but not well enough at this stage to be a viable alternative to more computationally intensive methods based on protein structure alignment.  相似文献   

7.
A general protein sequence alignment methodology for detecting a priori unknown common structural and functional regions is described. The method proposed in this paper is based on two basic requirements for a meaningful alignment. First, each sequence or segment of a sequence is characterized by a multivariate physicochemical profile. Second, the alignment is performed by considering all the sequences simultaneously, and the algorithm detects those regions that form a set of similar profiles. In order to test the structural meaning of the alignment obtained from the sequences, quantitative comparisons are performed with structurally conserved regions (SCR) determined from the X-ray structures of three serine proteases. Results suggest that the limits of the SCR may be predicted from the similarities between the physicochemical profiles of the sequences. The procedures are not completely automated. The final step requires a visual screening of alternative pathways in order to determine an optimal alignment.  相似文献   

8.
Protein combinatorial libraries provide new ways to probe the determinants of folding and to discover novel proteins. Such libraries are often constructed by expressing an ensemble of partially random gene sequences. Given the intractably large number of possible sequences, some limitation on diversity must be imposed. A non-uniform distribution of nucleotides can be used to reduce the number of possible sequences and encode peptide sequences having a predetermined set of amino acid probabilities at each residue position, i.e., the amino acid sequence profile. Such profiles can be determined by inspection, multiple sequence alignment or physically-based computational methods. Here we present a computational method that takes as input a desired sequence profile and calculates the individual nucleotide probabilities among partially random genes. The calculated gene library can be readily used in the context of standard DNA synthesis to generate a protein library with essentially the desired profile. The fidelity between the desired profile and the calculated one coded by these partially random genes is quantitatively evaluated using the linear correlation coefficient and a relative entropy, each of which provides a measure of profile agreement at each position of the sequence. On average, this method of identifying such codon frequencies performs as well or better than other methods with regard to fidelity to the original profile. Importantly, the method presented here provides much better yields of complete sequences that do not contain stop codons, a feature that is particularly important when all or large fractions of a gene are subject to combinatorial mutation.  相似文献   

9.
All popular algorithms of pair-wise alignment of protein primary structures (e.g. Smith-Waterman (SW), FASTA, BLAST, et al.) utilize only amino acid sequences. The SW-algorithm is the most accurate among them, i.e. it produces alignments that are most similar to the alignments obtained by superposition of protein 3D-structures. But even the SW-algorithm is unable to restore the 3D-based alignment if similarity of amino acid sequences (%id) is below 30%. We have proposed a novel alignment method that explicitly takes into account the secondary structure of the compared proteins. We have shown that it creates significantly more accurate alignments compared to SW-algorithm. In particular, for sequences with %id < 30% the average accuracy of the new method is 58% compared to 35% for SW-algorithm (the accuracy of an algorithmic sequence alignment is the part of restored position of a "golden standard" alignment obtained by superposition of corresponding 3D-structures). The accuracy of the proposed method is approximately identical both for experimental, and for theoretically predicted secondary structures. Thus the method can be applied for alignment of protein sequences even if protein 3D-structure is unknown. The program is available at ftp://194.149.64.196/STRUSWER/.  相似文献   

10.
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.  相似文献   

11.
Long-range correlations in genomic base composition are a ubiquitous statistical feature among many eukaryotic genomes. In this article, these correlations are shown to substantially influence the statistics of sequence alignment scores. Using a Gaussian approximation to model the correlated score landscape, we calculate the corrections to the scale parameter lambda of the extreme value distribution of alignment scores. Our approximate analytic results are supported by a detailed numerical study based on a simple algorithm to efficiently generate long-range correlated random sequences. We find both, mean and exponential tail of the score distribution for long-range correlated sequences to be substantially shifted compared to random sequences with independent nucleotides. The significance of measured alignment scores will therefore change upon incorporation of the correlations in the null model. We discuss the magnitude of this effect in a biological context.  相似文献   

12.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9. Supported by the National Natural Science Foundation of China (Grant Nos. 90403120, 10474041 and 10021001) and the Nonlinear Project (973) of the NSM  相似文献   

13.
An accurate approximation is derived to the distribution of the length of the longest matching word present between two random DNA sequences of finite length, using only elementary probability arguments. The distribution is shown to be consistent with previous asymptotic results for the mean and variance of longest common words. The application of the distribution to assessing the statistical significance of sequence similarities is considered. It is shown how the distribution can be modified to take account of non-independence of neighbouring bases in real sequences.  相似文献   

14.
A new classification scheme based on the melting profile of DNA sequences simulated thermal melting profiles. This method was applied in the classification of (a) several species of mammalian - β globin and (b) α-chain class II MHC genes. Comparison of the thermal melting profile with the molecular phylogenetic trees constructed using the sequences shows that the melting temperature based approach is able to reproduce most of the major features of the sequence based evolutionary tree. Melting profile method takes into account the inherent structure and dynamics of the DNA molecule, does not require sequence alignment prior to tree construction, and provides a means to verify the results experimentally. Therefore our results show that melting profile based classification of DNA sequences could be a useful tool for sequence analysis.  相似文献   

15.

Background

Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments.

Results

We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the input sequences are harder to align.

Conclusions

The proposed profile-based meta-alignment approach seems to be a promising and computationally efficient method that can be combined with practically all popular alignment methods and may lead to significant improvements in the generated alignments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-265) contains supplementary material, which is available to authorized users.  相似文献   

16.
The amino acid sequences of proteins determine their three-dimensional structures and functions. However, how sequence information is related to structures and functions is still enigmatic. In this study, we show that at least a part of the sequence information can be extracted by treating amino acid sequences of proteins as a collection of English words, based on a working hypothesis that amino acid sequences of proteins are composed of short constituent amino acid sequences (SCSs) or “words”. We first confirmed that the English language highly likely follows Zipf''s law, a special case of power law. We found that the rank-frequency plot of SCSs in proteins exhibits a similar distribution when low-rank tails are excluded. In comparison with natural English and “compressed” English without spaces between words, amino acid sequences of proteins show larger linear ranges and smaller exponents with heavier low-rank tails, demonstrating that the SCS distribution in proteins is largely scale-free. A distribution pattern of SCSs in proteins is similar among species, but species-specific features are also present. Based on the availability scores of SCSs, we found that sequence motifs are enriched in high-availability sites (i.e., “key words”) and vice versa. In fact, the highest availability peak within a given protein sequence often directly corresponds to a sequence motif. The amino acid composition of high-availability sites within motifs is different from that of entire motifs and all protein sequences, suggesting the possible functional importance of specific SCSs and their compositional amino acids within motifs. We anticipate that our availability-based word decoding approach is complementary to sequence alignment approaches in predicting functionally important sites of unknown proteins from their amino acid sequences.  相似文献   

17.
Homology-extended sequence alignment   总被引:5,自引:1,他引:4       下载免费PDF全文
We present a profile–profile multiple alignment strategy that uses database searching to collect homologues for each sequence in a given set, in order to enrich their available evolutionary information for the alignment. For each of the alignment sequences, the putative homologous sequences that score above a pre-defined threshold are incorporated into a position-specific pre-alignment profile. The enriched position-specific profile is used for standard progressive alignment, thereby more accurately describing the characteristic features of the given sequence set. We show that owing to the incorporation of the pre-alignment information into a standard progressive multiple alignment routine, the alignment quality between distant sequences increases significantly and outperforms state-of-the-art methods, such as T-COFFEE and MUSCLE. We also show that although entirely sequence-based, our novel strategy is better at aligning distant sequences when compared with a recent contact-based alignment method. Therefore, our pre-alignment profile strategy should be advantageous for applications that rely on high alignment accuracy such as local structure prediction, comparative modelling and threading.  相似文献   

18.
MOTIVATION: The observed correlations between pairs of homologous protein sequences are typically explained in terms of a Markovian dynamic of amino acid substitution. This model assumes that every location on the protein sequence has the same background distribution of amino acids, an assumption that is incompatible with the observed heterogeneity of protein amino acid profiles and with the success of profile multiple sequence alignment. RESULTS: We propose an alternative model of amino acid replacement during protein evolution based upon the assumption that the variation of the amino acid background distribution from one residue to the next is sufficient to explain the observed sequence correlations of homologs. The resulting dynamical model of independent replacements drawn from heterogeneous backgrounds is simple and consistent, and provides a unified homology match score for sequence-sequence, sequence-profile and profile-profile alignment.  相似文献   

19.
GeMMA (Genome Modelling and Model Annotation) is a new approach to automatic functional subfamily classification within families and superfamilies of protein sequences. A major advantage of GeMMA is its ability to subclassify very large and diverse superfamilies with tens of thousands of members, without the need for an initial multiple sequence alignment. Its performance is shown to be comparable to the established high-performance method SCI-PHY. GeMMA follows an agglomerative clustering protocol that uses existing software for sensitive and accurate multiple sequence alignment and profile–profile comparison. The produced subfamilies are shown to be equivalent in quality whether whole protein sequences are used or just the sequences of component predicted structural domains. A faster, heuristic version of GeMMA that also uses distributed computing is shown to maintain the performance levels of the original implementation. The use of GeMMA to increase the functional annotation coverage of functionally diverse Pfam families is demonstrated. It is further shown how GeMMA clusters can help to predict the impact of experimentally determining a protein domain structure on comparative protein modelling coverage, in the context of structural genomics.  相似文献   

20.
Functional annotation of protein sequences with low similarity to well characterized protein sequences is a major challenge of computational biology in the post genomic era. The cyclin protein family is once such important family of proteins which consists of sequences with low sequence similarity making discovery of novel cyclins and establishing orthologous relationships amongst the cyclins, a difficult task. The currently identified cyclin motifs and cyclin associated domains do not represent all of the identified and characterized cyclin sequences. We describe a Support Vector Machine (SVM) based classifier, CyclinPred, which can predict cyclin sequences with high efficiency. The SVM classifier was trained with features of selected cyclin and non cyclin protein sequences. The training features of the protein sequences include amino acid composition, dipeptide composition, secondary structure composition and PSI-BLAST generated Position Specific Scoring Matrix (PSSM) profiles. Results obtained from Leave-One-Out cross validation or jackknife test, self consistency and holdout tests prove that the SVM classifier trained with features of PSSM profile was more accurate than the classifiers based on either of the other features alone or hybrids of these features. A cyclin prediction server--CyclinPred has been setup based on SVM model trained with PSSM profiles. CyclinPred prediction results prove that the method may be used as a cyclin prediction tool, complementing conventional cyclin prediction methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号