首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Histone phosphorylation in late interphase and mitosis   总被引:7,自引:0,他引:7  
Histone phosphorylation in late interphase has been investigated employing cells synchronized by the isoleucine-deprivation method, followed by resynchronization at the G1S boundary using hydroxyurea. Phosphorylation occurred in both f1 and f2a2 as cells synchronously entered S phase following removal of hydroxyurea. The relative rates of phosphorylation of both species of histone increased in G2-rich and metaphase-rich cultures. A small amount of histone f3 phosphorylation was also observed in M-rich cultures which was not seen in G1, S, or G2-rich cultures. It is concluded that f1 phosphorylation is not dependent on continous DNA replication. These experiments suggest consideration of the concept that f1 phosphorylation is initiated as a preparation for impending cell division.  相似文献   

3.
4.
Posttranslational histone modifications regulate both gene expression and genome integrity. Despite the dynamic nature of these modifications, appropriate real-time monitoring systems are lacking. In this study, we developed a method to visualize histone modifications in living somatic cells and preimplantation embryos by loading fluorescently labeled specific Fab antibody fragments. The technique was used to study histone H3 Ser10 (H3S10) phosphorylation, which occurs during chromosome condensation in mitosis mediated by the aurora B kinase. In aneuploid cancer cells that frequently missegregate chromosomes, H3S10 is phosphorylated just before the chromosomes condense, whereas aurora B already accumulates in nuclei during S phase. In contrast, in nontransformed cells, phosphorylated H3S10 foci appear for a few hours during interphase, and transient exposure to an aurora B–selective inhibitor during this period induces chromosome missegregation. These results suggest that, during interphase, moderate aurora B activity or H3S10 phosphorylation is required for accurate chromosome segregation. Visualizing histone modifications in living cells will facilitate future epigenetic and cell regulation studies.  相似文献   

5.
Histone phosphorylation has long been associated with condensed mitotic chromatin; however, the functional roles of these modifications are not yet understood. Histones H1 and H3 are highly phosphorylated from late G2 through telophase in many organisms, and have been implicated in chromatin condensation and sister chromatid segregation. However, mutational analyses in yeast and biochemical experiments with Xenopus extracts have demonstrated that phosphorylation of H1 and H3 is not essential for such processes. In this study, we investigated additional histone phosphorylation events that may have redundant functions to H1 and H3 phosphorylation during mitosis. We developed an antibody to H4 and H2A that are phosphorylated at their respective serine 1 (S1) residues and found that H4S1/H2AS1 are highly phosphorylated in the mitotic chromatin of worm, fly, and mammals. Mitotic H4/H2A phosphorylation has similar timing and localization as H3 phosphorylation, and closely correlates with the chromatin condensation events during mitosis. We also detected a lower level of H4/H2A phosphorylation in 5-bromo-2-deoxyuridine-positive S-phase cells, which corroborates earlier studies that identified H4S1 phosphorylation on newly synthesized histones during S-phase. The evolutionarily conserved phosphorylation of H4/H2A during the cell cycle suggests that they may have a dual purpose in chromatin condensation during mitosis and histone deposition during S-phase.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00412-004-0281-9Communicated by G. Almouzni  相似文献   

6.
In Alzheimer's disease, neurofibrillary degeneration results from the aggregation of abnormally phosphorylated Tau proteins into filaments and it may be related to the reactivation of mitotic mechanisms. In order to investigate the link between Tau phosphorylation and mitosis, Xenopus laevis oocytes in which most of the M-phase regulators have been discovered were used as a cell model. The human Tau isoform htau412 (2+3-10+) was microinjected into prophase I oocytes that were then stimulated by progesterone that activate cyclin-dependent kinase pathways. Hyperphosphorylation of the Tau isoform, which is characterized by a decrease of its electrophoretic mobility and its labelling by a number of phosphorylation-dependent antibodies, was observed at the time of germinal vesicle breakdown. Surprisingly, Tau immunoreactivity, considered as typical of Alzheimer's pathology (AT100 and phospho-Ser422), was observed in meiosis II. Because meiosis II is considered as a mitosis-like phase, we investigated if our observation was also relevant to a neurone-like model. Abnormal Tau phosphorylation was detected in mitotic human neuroblastoma SY5Y cells overexpressing Tau. Regarding AT100-immunoreactivity and phospho-Ser422, we suggest that phosphatase 2A inhibition and a phosphorylation combination of mitotic kinases may lead to this Alzheimer-type phosphorylation. Our results not only demonstrate the involvement of mitotic kinases in Alzheimer-type Tau phosphorylation but also indicate that Xenopus oocyte could be a useful model to identify the kinases involved in this process.  相似文献   

7.
Histone H3 (H3) phosphorylation at Ser(10) occurs during mitosis in eukaryotes and was recently shown to play an important role in chromosome condensation in Tetrahymena. When producing monoclonal antibodies that recognize glial fibrillary acidic protein phosphorylation at Thr(7), we obtained some monoclonal antibodies that cross-reacted with early mitotic chromosomes. They reacted with 15-kDa phosphoprotein specifically in mitotic cell lysate. With microsequencing, this phosphoprotein was proved to be H3. Mutational analysis revealed that they recognized H3 Ser(28) phosphorylation. Then we produced a monoclonal antibody, HTA28, using a phosphopeptide corresponding to phosphorylated H3 Ser(28). This antibody specifically recognized the phosphorylation of H3 Ser(28) but not that of glial fibrillary acidic protein Thr(7). Immunocytochemical studies with HTA28 revealed that Ser(28) phosphorylation occurred in chromosomes predominantly during early mitosis and coincided with the initiation of mitotic chromosome condensation. Biochemical analyses using (32)P-labeled mitotic cells also confirmed that H3 is phosphorylated at Ser(28) during early mitosis. In addition, we found that H3 is phosphorylated at Ser(28) as well as Ser(10) when premature chromosome condensation was induced in tsBN2 cells. These observations suggest that H3 phosphorylation at Ser(28), together with Ser(10), is a conserved event and is likely to be involved in mitotic chromosome condensation.  相似文献   

8.
Phosphorylation of histone H1 is intimately related to the cell cycle progression in higher eukaryotes, reaching maximum levels during mitosis. We have previously shown that in the flagellated protozoan Trypanosoma cruzi, which does not condense chromatin during mitosis, histone H1 is phosphorylated at a single cyclin-dependent kinase site. By using an antibody that recognizes specifically the phosphorylated T. cruzi histone H1 site, we have now confirmed that T. cruzi histone H1 is also phosphorylated in a cell cycle-dependent manner. Differently from core histones, the bulk of nonphosphorylated histone H1 in G(1) and S phases of the cell cycle is concentrated in the central regions of the nucleus, which contains the nucleolus and less densely packed chromatin. When cells pass G(2), histone H1 becomes phosphorylated and starts to diffuse. At the onset of mitosis, histone H1 phosphorylation is maximal and found in the entire nuclear space. As permeabilized parasites preferentially lose phosphorylated histone H1, we conclude that this modification promotes its release from less condensed and nucleolar chromatin after G(2).  相似文献   

9.
To study phosphorylation of D. melanogaster nuclear lamins in vivo, we used Kc tissue culture cells. Kc cells contain products of both lamin genes, the lamin Dm0 gene encoding constitutive polypeptides expressed in almost all cell types and the developmentally regulated lamin C gene. We grew Kc cells in low phosphate medium and labelled them with (32P(H3PO4. To obtain mitotic cells we used vinblastine to arrest cells in metaphase. Cells were collected, washed, lysed and resultant extracts fractionated in the presence of protein phosphatase inhibitors. D. melanogaster proteins were then denatured by boiling in SDS plus DTT, followed by immunoaffinity chromatography and SDS-PAGE purification. As anticipated, we found that a CNBr fragment derived from the N-terminal part of lamin Dm0-derivatives (amino acid residues 2-158; fragment A) was phosphorylated during both interphase and mitosis. Interphase but not mitotic phosphorylation was found on an internal CNBr fragment (derived from the end of the central rod domain and the first part of the C-terminal lamin tail; amino acid residues 385-548; fragment D). Interphase only phosphorylation was also detected on another CNBr fragment derived from the extreme C-terminal portion of lamin Dm0-derivatives (amino acid residues 549-622; fragment E). To supplement these data, we used 2-D tryptic peptide mapping followed by phosphorImager analysis. We routinely detected at least seven 'spots' derived from interphase lamins but only a single mitotic lamin phosphopeptide.  相似文献   

10.
11.
Phosphorylation of histone H3 is a hallmark event in mitosis and is associated with chromosome condensation. Here, we use a combination of immobilized metal affinity chromatography and tandem mass spectrometry to characterize post-translational modifications associated with phosphorylation on the N-terminal tails of histone H3 variants purified from mitotically arrested HeLa cells. Modifications observed in vivo on lysine residues adjacent to phosphorylated Ser and Thr provide support for the existence of the "methyl/phos", binary-switch hypothesis [Fischle, W., Wang, Y., and Allis, C. D. (2003) Nature 425, 475-479]. ELISA with antibodies selective for H3 at Ser10, Ser28, and Thr3 show reduced activity when adjacent Lys residues are modified. When used together, mass spectrometry and immunoassay methods provide a powerful approach for elucidation of the histone code and identification of histone post-translational modifications that occur during mitosis and other specific cellular events.  相似文献   

12.
In regenerating rat liver, nuclear protein histone H2A was shown to be phosphorylated on its amino-terminal serine residue [Sung et al. (1971) J. Biol. Chem. 246, 1358-1364], but the protein kinase which phosphorylates this residue has not been identified. To evaluate the possibility that protein kinase C can phosphorylate this residue, calf thymus histone H2A was 32P-labeled by incubation with [gamma-32P]ATP and highly purified protein kinase C from rat brain in the presence of calcium and phospholipid. About 1 mol of 32P was incorporated per mol of histone H2A and the Km and apparent Vmax of the reaction were calculated to be 2.1 microM and 0.35 mumol/min/mg, respectively. So histone H2A seemed to be a good substrate for protein kinase C. Further, the proteolytic phosphopeptides of 32P-labeled histone H2A were isolated by means of a series of column chromatographies and analyzed for their amino acid compositions. Comparison of the data with the known primary structure of histone H2A revealed their amino acid sequence as 1Ser-Gly-Arg. These data suggest that protein kinase C may be a candidate for the protein kinase which phosphorylates the amino-terminal serine residue of histone H2A during the regeneration of rat liver.  相似文献   

13.
Histone post-translational modifications are key contributors to chromatin structure and function, and participate in the maintenance of genome stability. Understanding the establishment and maintenance of these marks, along with their misregulation in pathologies is thus a major focus in the field. While we have learned a great deal about the enzymes regulating histone modifications on nucleosomal histones, much less is known about the mechanisms establishing modifications on soluble newly synthesized histones. This includes methylation of lysine 9 on histone H3 (H3K9), a mark that primes the formation of heterochromatin, a critical chromatin landmark for genome stability. Here, we report that H3K9 mono- and dimethylation is imposed during translation by the methyltransferase SetDB1. We discuss the importance of these results in the context of heterochromatin establishment and maintenance and new therapeutic opportunities in pathologies where heterochromatin is perturbed.  相似文献   

14.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disease resulting from an expanded CAG repeat in the SCA1 gene that leads to an expanded polyglutamine tract in the gene product. Previous studies have demonstrated that serine at site 776 is phosphorylated [E.S. Emiamian, M.D. Kaytor, L.A. Duvick, T. Zu, S.K. Tousey, H.Y. Zoghbi, H.B. Clark, H.T. Orr, Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice, Neuron 38 (2003) 375-387.]. Studies of ataxin-1 S776 and serine mutated to an alanine, A776, have also shown differential protein-protein interactions and reduced neurodegeneration [H.K. Chen, P. Fernandez-Funez, S.F. Acevedo, Y.C. Lam, M.D. Kaytor, M.H. Fernandez, A. Aitken, E.M. Skoulakis, H.T. Orr, J. Botas, H.Y. Zoghbi, Interaction of Akt_phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1.]. However, mutation of the site serine 776 to an alanine did not abolish all phosphorylation of the protein ataxin-1, suggesting the presence of additional phosphorylation sites [E.S. Emiamian, M.D. Kaytor, L.A. Duvick, T. Zu, S.K. Tousey, H.Y. Zoghbi, H.B. Clark, H.T. Orr, Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice, Neuron 38 (2003) 375-387.]. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and mutational analysis demonstrated a novel phosphorylation site at serine 239 of ataxin-1.  相似文献   

15.
Histone H1 phosphorylation was examined during embryonic development of Drosophila hydei. A changing pattern of H1 phosphorylation upon separation on an acid-urea polyacrylamide gel was observed in the course of Drosophila embryogenesis. It is considered to be related to the decrease of the mitotic activity of the cells as development proceeds.  相似文献   

16.
The human DNA damage responses are modulated by both nonessential and essential pathways. The extensively studied ATM kinase and p53 are examples of the former. While loss-of-function mutations in genes that encode ATM and p53 cause marked predispositions to cancer, the loss of these proteins does not appear to impact basic cell growth and proliferation. In contrast, the checkpoint kinase Chk1 and its upstream activator ATR are essential.1-4 What do these proteins do in undamaged cells?  相似文献   

17.
18.
A Kharrat  J Derancourt  M Dorée  F Amalric  M Erard 《Biochemistry》1991,30(42):10329-10336
Repeated motifs, rich in basic residues, are characteristic of both the N-terminal domain of the nucleolus-specific protein, nucleolin, and the second half of the C-terminal domain of histone H1. These repeats are also the target for phosphorylation by the mitosis-specific p34cdc2 kinase. We have previously shown that synthetic peptides [(KTPKKAKKP)2 for histone H1 and (ATPAKKAA)2 for nucleolin] corresponding to these two repeated motifs are able to act in synergy to induce DNA hypercondensation (Erard et al., 1990). In order to determine the molecular basis of this synergistic interaction, we have studied the condensation of the homopolymer poly(dA).poly(dT) in the presence of the two synthetic peptides. Circular dichroism has been used to monitor the psi (+)-type condensation and has revealed that phosphorylation enhances the synergistic effect of the two peptides. Analysis of different combinations of the two peptides suggests that there is a direct interaction between them which is stabilized by phosphorylation. Furthermore, there is a striking correlation between the degree of homopolymer condensation and the stability of the heteromeric complex. Phosphorylation takes place on the threonine residues on the repeat motifs within a region which is likely to adopt a beta-turn structure. Circular dichroism and infrared spectroscopy provide evidence that phosphorylation stabilizes the beta-turn structure of both peptides, and computer modeling shows that this may be due to steric hindrance imposed by the phosphate group. We suggest that phosphorylated nucleolin and histone H1 interact through their homologous domain structured in beta-spirals in order to condense certain forms of DNA during mitosis.  相似文献   

19.
Phosphorylation of the nuclear lamins during interphase and mitosis   总被引:68,自引:0,他引:68  
The nuclear lamina is a polymeric protein assembly that is proposed to function as an architectural framework for the nuclear envelope. Previous work suggested that phosphorylation of the major polypeptides of the lamina (the "lamins") may induce disassembly of this structure during mitosis. To further investigate the possible involvement of phosphorylation in regulation of lamina structure, we characterized lamin phosphorylation occurring in mammalian tissue culture cells during interphase and mitosis. Phosphorylation occurs continuously throughout all interphase periods (coordinately with nuclear envelope growth), and takes place mainly on the assembled lamina. When the lamina is disassembled during cell division, the lamins are modified with approximately 1-2 molecules of associated phosphate. This level of mitotic phosphorylation is 4-7-fold higher than the average interphase level. Lamin phosphate occurs predominantly as phosphoserine, and is distributed over numerous tryptic peptides, many of which are modified during both interphase and mitotic periods. Significantly, phosphorylation is the only detectable charge-altering postsynthetic modification of the lamins that occurs specifically during mitosis. The results of this study support the notion that phosphorylation is important for regulation of interphase and mitotic lamina structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号