首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three cDNAs encoding putative larval cuticle protein (LCP) were cloned from the mulberry longicorn beetle, Apriona germari. The three cDNA sequences were 309 bp, 396 bp and 408 bp in length, encoding 103, 132 and 136 amino acid residues, respectively. The predicted molecular masses for these LCPs were approximately 9.2 kDa (AgLCP9.2), 12.3 kDa (AgLCP12.3) and 12.6 kDa (AgLCP12.6). Pairwise identity among AgLCP9.2, AgLCP12.3 and AgLCP12.6 were relatively low. Each AgLCP contained a type-specific consensus sequence identifiable in other insect cuticle proteins. The deduced amino acid sequence of AgLCP9.2 is most similar to Bombyx mori LCP18 and those of AgLCP12.3 and AgLCP12.6 are both most similar to B. mori LCP17. Northern blot analysis revealed that the three AgLCPs showed epidermis-specific expression. The expression profile of AgLCPs after larval ecdysis revealed by Northern blot analysis that the high-level mRNA expression of AgLCPs was detected on the first day of larval ecdysis for AgLCP9.2, on the fifth day for AgLCP12.3 and from the first day of larval ecdysis to the fifth day after larval ecdysis for AgLCP12.6, demonstrating that AgLCP mRNAs are differentially expressed in epidermis after larval ecdysis.  相似文献   

2.
We have previously cloned a cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Ag-EGase I) belonging to glycoside hydrolase family (GHF) 45 from the mulberry longicorn beetle, Apriona germari. We report here the gene structure, expression and enzyme activity of an additional celluase (Ag-EGase II) from A. germari and also described the gene structure of Ag-EGase I. The Ag-EGase II gene spans 1033 bp and consisted of two introns and three exons coding for 239 amino acid residues. The 2713-bp-long genomic DNA of Ag-EGase I also consisted of two introns and three exons. The Ag-EGase II showed 61% protein sequence identity to Ag-EGase I and 51% to another beetle, Phaedon cochleariae, cellulase, belonging to GHF 45. The catalytic sites of GHF 45 are conserved in Ag-EGase II. The Ag-EGase II has 14 conserved cysteine residues and three putative N-glycosylation sites. Northern blot analysis confirmed midgut-specific expression of Ag-EGase II, suggesting that the midgut is the prime site for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase II was expressed as a 36-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase II was approximately 812 U/mg of recombinant Ag-EGase II. The enzymatic properties of the purified recombinant Ag-EGase II showed the highest activity at 50 °C and pH 6.0, and were stable at 60 °C at least for 10 min.  相似文献   

3.
4.
We previously reported that the beta-1,4-endoglucanase (EGase) belonging to glycoside hydrolase family 45 cloned from the mulberry longicorn beetle, Apriona germari (Ag-EGase I), is composed of 237 amino acid residues and has a potential N-glycosylation site at 97-100 amino acid residues (NSTF). We here describe the N-glycosylation and its role for enzymatic activity of the Ag-EGase I. The N-glycosylation of Ag-EGase I was revealed by the treatment of tunicamycin to the recombinant virus-infected insect Sf9 cells and by endoglycosidase F to the purified recombinant Ag-EGase I, demonstrating that the carbohydrate moieties are not necessary for secretion but essential for Ag-EGase I enzyme activity. To further elucidate the functional role of the N-glycosylation in Ag-EGase I, we have assayed the cellulase enzyme activity in Thr99Gln mutant. Lack of N-glycosylation in Ag-EGase I showed no substantial enzyme activity. This result demonstrates that N-glycosylation at site 97-100 amino acid residues (NSTF) is essential for enzyme activity.  相似文献   

5.
An arylphorin-like hexameric storage protein, AgeHex2, cDNA was cloned from the mulberry longicorn beetle, Apriona germari (Coleoptera, Cerambycidae), larval cDNA library. The complete cDNA sequence of AgeHex2 is comprised of 2,088 bp encoding 696 amino acid residues. The AgeHex2 had four potential N-glycosylation sites. The AgeHex2 contained the highly conserved two larval storage protein signature motifs. The deduced protein sequence of AgeHex2 showed high homology with A. germari hexamerin1 (51% amino acid identity), Tenebrio molitor hexamerin2 (49% amino acid identity), T. molitor early-staged encapsulation inducing protein (43% amino acid identity), and Leptinotarsa decemlineata diapause protein1 (43% amino acid identity). Phylogenetic analysis further confirmed the AgeHex2 is more closely related to coleopteran hexamerins than to the other insect storage proteins. Northern blot analysis confirmed that the AgeHex2 showed fat body-specific expression. The cDNA encoding AgeHex2 was expressed as a 75-kDa protein in the baculovirus-infected insect cells. Furthermore, N-glycosylation of the recombinant AgeHex2 was revealed by tunicamycin to the recombinant virus-infected Sf9 cells, demonstrating that the AgeHex2 is N-glycosylated. Western blot analysis using the polyclonal antiserum against recombinant AgeHex2 indicated that the AgeHex2 corresponds to a 75-kDa storage protein present in the A. germari larval hemolymph.  相似文献   

6.
To gain better knowledge of the variety of digestive enzymes in phytophagous coleopteran pests, a sequencing screen of 76 random cDNAs from a gut library from Phaedon cochleariae larvae was performed. The screen yielded 21 cDNAs encoding amino-acid sequences homologous to known digestive enzymes, most of them were cell wall-hydrolysing enzymes. The deduced protein sequences of 7 cDNAs encoding putative α-amylase, cysteine proteinase, trypsin, chymotrypsin, cellulase, pectinase and xylanase display all the structural features that characterize these enzymes in other eukaryotic organisms. Except the α-amylase and chymotrypsin cDNAs, the other cDNAs probably derive from multigene families. The distribution of the corresponding enzymatic activities at various developmental stages of P. cochleariae was examined. α-amylase activity is present in guts of larvae and adults, proteinases are abundant in guts of larvae and adults, but scarce in eggs and larval carcasses, xylanases are present in the guts of larvae and adults, as well as in carcasses of larvae, whereas cellulase and pectinase activities are distributed in larval and adult guts, larval carcasses, and eggs. Only a minor fraction of the cellulases is secreted by microorganisms, suggesting that P. cochleariae synthesizes most of its own cell-wall hydrolysing enzymes. The physiological role of the enzymes is discussed, as well as the significance of these results for pest management strategies involving transgenic plants expressing enzyme inhibitors.  相似文献   

7.
A digestive β-glucosidase cDNA was cloned from the silkworm, Bombyx mori. The B. mori β-glucosidase cDNA contains an open reading frame of 1473 bp encoding 491 amino acid residues. The B. mori β-glucosidase possesses the amino acid residues involved in catalysis and substrate binding conserved in glycosyl hydrolase family 1. Southern blot analysis of genomic DNA suggested the B. mori β-glucosidase to be a single gene. Northern blot analysis of B. mori β-glucosidase gene confirmed larval midgut-specific expression. The B. mori β-glucosidase mRNA expression in larval midgut was detectable only during feeding period, whereas its expression was downregulated during starvation. The B. mori β-glucosidase cDNA was expressed as a 57-kDa polypeptide in baculovirus-infected insect Sf9 cells, and the recombinant β-glucosidase was active on cellobiose and lactose, but not active on salicin, indicating that the B. mori β-glucosidase possesses the characteristics of the Class 2 enzyme. The enzyme activity of the purified recombinant β-glucosidase expressed in baculovirus-infected insect cells was approximately 665 U per μg of recombinant B. mori β-glucosidase. The purified recombinant B. mori β-glucosidase showed the highest activity at 35 °C and pH 6.0, and were stable at 50 °C at least for 10 min. Treatment of recombinant virus-infected Sf9 cells with tunicamycin, a specific inhibitor of N-glycosylation, revealed that the recombinant B. mori β-glucosidase is N-glycosylated, but the carbohydrate moieties are not essential for enzyme activity.  相似文献   

8.
Stachybotrys elegans is a mycoparasite of the soilborne plant pathogenic fungus Rhizoctonia solani. The mycoparasitic activity of S. elegans is correlated with the production of cell wall degrading enzymes such as chitinases. This report details the cloning by RACE-PCR and characterization of a full-length cDNA clone, sechi44, that appears to encode an extracellular endochitinase. An analysis of the sechi44 sequence indicates that this gene contains a 1269-bp ORF and encodes a 423-aa polypeptide. The SECHI44 protein has a calculated molecular weight of 44.1kDa and pI of 5.53. Since the SECHI44 protein also appears to encode a signal peptide, an extracellular location for the corresponding protein is predicted. Comparison of SECHI44 sequence with known sequences of fungal endochitinases revealed that SECHI44 is grouped with endochitinases from other mycoparasites. Real-time quantitative RT-PCR analysis showed an elevated level of expression of sechi44 (21-fold) in chitin-rich (induced) as compared to no-carbon (non-induced) culture conditions. In dual culture, the temporal expression of sechi44 increased after 2 days of contact with R. solani, reaching a 10-fold increase after 9 days, followed by a decrease to basic expression level at 12 days. Interestingly, inhibition of sechi44 expression was observed when S. elegans hyphae were in close proximity with R. solani hyphae.  相似文献   

9.
Shen G  Pang Y  Wu W  Miao Z  Qian H  Zhao L  Sun X  Tang K 《Journal of plant physiology》2005,162(10):1160-1168
A novel defensin gene was isolated from Ginkgo biloba. The full-length cDNA of G. biloba defensin (designated as Gbd) was 534bp. The cDNA contained a 240-bp open reading frame encoding an 80-amino acid protein of 5.68 kDa with a potential 30 aa signal peptide. The putative GbD mature protein showed striking similarity to other plant defensins, representing low molecular size antimicrobial polypeptides. Eight cysteine sites conserved in plant defensins were also found in GbD at similar positions. Three-dimensional structure modeling showed that GbD strongly resembled defensin from tobacco (NaD1) and consisted of an alpha-helix and a triple-strand antiparallel beta-sheet that were stabilized by four intramolecular disulfide bonds, implying GbD may have functions similar to NaD1. The genomic DNA gel blot indicated that Gbd belonged to a multigene family. Expression analysis revealed that Gbd was up-regulated by wounding and methyl jasmonate treatments, suggesting that Gbd is potentially involved in plant resistance or tolerance to pathogens during wounding.  相似文献   

10.
A full-length cDNA clone with high homology (62% mature peptide sequence identity) to an Acalolepta luxuriosa antibacterial gene, possessing a conserved cysteine-stabilized alphabeta motif, was cloned by screening an Apriona germari cDNA library. This gene (AgCRP) had a total length of 360 bp with an open reading frame of 207 bp, and encoded a predicted peptide of 69 amino acid residues. The mature AgCRP peptide was 27 amino acid residues long and had a cysteine-stabilized alphabeta motif of C...CXXXC...C...CXC consensus sequence, similar to insect defensins. Northern blot analysis revealed that the AgCRP exhibited fat body-specific expression and was up-regulated by wounding, bacterial or fungal challenge.  相似文献   

11.
Sf9, a cell line derived from the lepidopteran insect, Spodoptera frugiperda, is widely used as a host for recombinant glycoprotein expression and purification by baculovirus vectors. Previous studies have shown that this cell line has one or more beta-N-acetylglucosaminidase activities that may be involved in the degradation and/or processing of N-glycoprotein glycans. However, these enzymes and their functions remain poorly characterized. Therefore, the goal of this study was to isolate beta-N-acetylglucosaminidase genes from Sf9 cells, over-express the gene products, and characterize their enzymatic activities. A degenerate PCR approach yielded three Sf9 cDNAs, which appeared to encode two distinct beta-N-acetylglucosaminidases, according to bioinformatic analyses. Baculovirus-mediated expression of these two cDNA products induced membrane-associated beta-N-acetylglucosaminidase activities in Sf9 cells, which cleaved terminal N-acetylglucosamine residues from the alpha-3 and -6 branches of a biantennary N-glycan substrate with acidic pH optima and completely hydrolyzed chitotriose to its constituent N-acetylglucosamine monomers. GFP-tagged forms of both enzymes exhibited punctate cytoplasmic fluorescence, which did not overlap with either lysosomal or Golgi-specific dyes. Together, these results indicated that the two new Sf9 genes identified in this study encode broad-spectrum beta-N-acetylglucosaminidases that appear to have unusual intracellular distributions. Their relative lack of substrate specificity and acidic pH optima are consistent with a functional role for these enzymes in glycoprotein glycan and chitin degradation, but not with a role in N-glycoprotein glycan processing.  相似文献   

12.
13.
14.
15.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, EC: 1.1.1.267) is the second enzyme in the 2C-methyl-d-erythritol 4-phosphate (MEP) pathway, one of the two pathways in plants that can produce isoprenoids. The MEP pathway is the source of isoprene emitted from leaves, but rubber production is believed to result primarily from the mevalonic acid (MVA) pathway. Two cDNAs for DXR designated HbDXR1 and HbDXR2 were isolated from leaves and latex of rubber tree using RT-PCR based methods. Both cDNAs contain an open reading frame (ORF) of 1416bp encoding 471 amino acids with a molecular mass of about 51kDa. The deduced HbDXRs show extensive sequence similarities to that of other plant DXRs (73-87% identity). Molecular modeling revealed that the two HbDXRs contain all typical characteristics of DXR and share spatial structures, which are very similar to that of Escherichia coli DXR. Phylogenetic and DNA gel blot analyses suggested that a duplication of the DXR gene has occurred in the rubber tree. Semi-quantitative RT-PCR analysis showed that the HbDXR genes are differentially regulated in various tissues of the rubber tree. The HbDXR2 was more highly expressed in clone RRIM 600 than in the wild type, and this is consistent with higher rubber content of this clone. While 2-chloroethane phosphonic acid (ethephon) significantly increased latex yield, it only transiently induced the HbDXR2 gene. The expression of HbDXR2 in the latex suggests its important role in isoprenoid biosynthesis by substrate molecules, indicating that the MEP pathway may have some indirect roles in the biosynthesis of rubber.  相似文献   

16.
17.
Two previously uncharacterized cDNAs encoding for polyketide synthases (PKSs), designated as HpPKS1 and HpPKS2, were isolated from Hypericum perforatum. The full-length HpPKS1 was 1573bp containing an open reading frame (ORF) of 1161bp encoding for a 386 amino acid protein. The full-length cDNA of HpPKS2 was 1559bp with an ORF of 1182bp encoding for a 393 amino acid protein. The highly conserved catalytic amino acid residues common to plant-specific PKSs were preserved in both genes. HpPKS1 and HpPKS2 exhibited distinct tissue-specific expression patterns in H. perforatum. The HpPKS1 expression was highest in flower buds and lowest in root tissues. The expression of HpPKS2 was found to be high in flower buds and leaf margins and low in leaf interior parts, stems and roots. The expression of the HpPKS1 was found to correlate with the concentrations of hyperforin and adhyperforin while the expression of HpPKS2 showed correlation with the concentrations of hypericins and pseudohypericins in H. perforatum tissues.  相似文献   

18.
To gain better knowledge of the variety of digestive enzymes in phytophagous coleopteran pests, a sequencing screen of 76 random cDNAs from a gut library from Phaedon cochleariae larvae was performed. The screen yielded 21 cDNAs encoding amino-acid sequences homologous to known digestive enzymes, most of them were cell wall-hydrolysing enzymes. The deduced protein sequences of 7 cDNAs encoding putative -amylase, cysteine proteinase, trypsin, chymotrypsin, cellulase, pectinase and xylanase display all the structural features that characterize these enzymes in other eukaryotic organisms. Except the -amylase and chymotrypsin cDNAs, the other cDNAs probably derive from multigene families. The distribution of the corresponding enzymatic activities at various developmental stages of P. cochleariae was examined. -amylase activity is present in guts of larvae and adults, proteinases are abundant in guts of larvae and adults, but scarce in eggs and larval carcasses, xylanases are present in the guts of larvae and adults, as well as in carcasses of larvae, whereas cellulase and pectinase activities are distributed in larval and adult guts, larval carcasses, and eggs. Only a minor fraction of the cellulases is secreted by microorganisms, suggesting that P. cochleariae synthesizes most of its own cell-wall hydrolysing enzymes. The physiological role of the enzymes is discussed, as well as the significance of these results for pest management strategies involving transgenic plants expressing enzyme inhibitors.  相似文献   

19.
A novel endogenous beta-1,4-endoglucanase (Ag-EGase III) gene belonging to the glycoside hydrolase family (GHF) 5 was cloned from the mulberry longicorn beetle, Apriona germari. The Ag-EGase III gene spans 1061 bp and consists of a single exon coding for 325 amino acid residues. The Ag-EGase III showed 89% protein sequence identity to another beetle, Psacothea hilaris, cellulase belonging to GHF 5. The Ag-EGase III has the potential proton donor and nucleophile amino acids conserved in GHF 5 and two putative N-glycosylation sites. Northern blot and Western blot analyses showed that Ag-EGases were expressed in the gut; Ag-EGase III and Ag-EGase I were expressed in three gut regions, and no Ag-EGase II was found in hindgut, indicating that the foregut and midgut are the prime sites for cellulase synthesis in A. germari larvae. The cDNA encoding Ag-EGase III was expressed as a 47-kDa polypeptide in baculovirus-infected insect Sf9 cells and the enzyme activity of the purified recombinant Ag-EGase III was approximately 1037 U per mg of recombinant Ag-EGase III. The enzymatic property of the purified recombinant Ag-EGase III showed the highest activity at 55 degrees C and pH 6.0, and was stable at 60 degrees C at least for 10 min. In addition, the N-glycosylation of Ag-EGase III was revealed by treatment with tunicamycin of recombinant virus-infected insect Sf9 cells and with endoglycosidase F of purified recombinant Ag-EGase III, demonstrating that the carbohydrate moieties are not necessary for enzyme activity.  相似文献   

20.
In plants, O-methyltransferases (OMTs) play an important role in methylation of secondary metabolites, especially flavonoids and other phenylpropanoids, and two cDNA clones, IhOMT1 and IhOMT2 (Iris hollandica OMT), encoding OMTs were successfully isolated from a cDNA library of flower buds of I. hollandica. IhOMT1 encodes an open reading frame (ORF) of 365 amino acids with calculated molecular mass of 40,193Da and isoelectric point (pI) of 5.54, while IhOMT2, which shares 31.5% amino acid sequence identity with IhOMT1, encodes 369 amino acids with calculated molecular mass of 40,385Da and pI of 5.50. In addition, the molecular masses of both recombinant IhOMT1 and IhOMT2 proteins were estimated to be about 40kDa by protein gel blot analysis. Characterization of the enzymatic properties using the recombinant IhOMT1 protein confirmed that IhOMT1 cDNA encodes a S-adenosyl-l-methionine (SAM)-dependent caffeic acid 3-OMT, which catalyzes the transfer of the methyl moiety from SAM to caffeic acid to form ferulic acid. Its optimum activity was observed at pH 7.5-8.0 and at 35 degrees C. This is the first report of the isolation and characterization of a COMT cDNA clone involved in the phenylpropanoid biosynthesis of Iridaceae plants. In contrast, IhOMT2 showed no activity in SAM-dependent assays for various phenylpropanoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号