首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The P2Y1 receptor is a membrane-bound G protein-coupled receptor stimulated by adenine nucleotides. Using alanine scanning mutagenesis, the role in receptor activation of charged amino acids (Asp, Glu, Lys, and Arg) and cysteines in the extracellular loops (EL) of the human P2Y1 receptor has been investigated. The mutant receptors were expressed in COS-7 cells and measured for stimulation of phospholipase C induced by the potent agonist 2-methylthioadenosine-5'-diphosphate (2-MeSADP). In addition to single point mutations, all receptors carried the hemagglutinin epitope at the N- terminus for detection of cell-surface expression. The C124A and C202A mutations, located near the exofacial end of transmembrane helix 3 and in EL2, respectively, ablated phospholipase C stimulation by 1000-fold greater than for the wild-type receptor. The double mutant receptor C42A/C296A exhibited no additive shift in the concentration-response curve for 2-MeSADP. These data suggest that Cys42 and Cys296 form another disulfide bridge in the extracellular region, which is critical for activation. Replacement of charged amino acids produced only minor changes in receptor activation, with two remarkable exceptions. The E209A mutant receptor (EL2) exhibited a >1000-fold shift in EC50. However, if Glu209 were substituted with amino acids capable of hydrogen bonding (Asp, Gln, or Arg), the mutant receptors responded like the wild-type receptor. Arg287 in EL3 was impaired similarly to Glu209 when substituted by alanine. Substitution of Arg287 by lysine, another positively charged residue, failed to fully restore wild-type activity.  相似文献   

2.
Some membrane-permeable antagonists restore cell surface expression of misfolded receptors retained in the endoplasmic reticulum (ER) and are therefore termed pharmacochaperones. Whether pharmacochaperones increase protein stability, thereby preventing rapid degradation, or assist folding via direct receptor interactions or interfere with quality control components remains elusive. We now show that the cell surface expression and function (binding of the agonist) of the mainly ER-retained wild-type murine vasopressin V2 receptor GFP fusion protein (mV2R.GFP) is restored by the vasopressin receptor antagonists SR49059 and SR121463B with EC50 values similar to their KD values. This effect was preserved when protein synthesis was abolished. In addition, SR121463B rescued eight mutant human V2Rs (hV2Rs, three are responsible for nephrogenic diabetes insipidus) characterized by amino acid exchanges at the C-terminal end of transmembrane helix TM I and TM VII. In contrast, mutants with amino acid exchanges at the interface of TM II and IV were not rescued by either antagonist. The mechanisms involved in successful rescue of cell surface delivery are explained in a three-dimensional homology model of the antagonist-bound hV2R.  相似文献   

3.
In mammals, the vasopressin V(1b) receptor (V(1b)-R) is known to regulate ACTH secretion and, more recently, stress and anxiety. The characterization of the molecular determinant responsible for its pharmacological selectivity was made possible by the recent discovery of the first V(1b) antagonist, SSR149415. Based upon the structure of the crystallized bovine rhodopsin, we established a three-dimensional molecular model of interaction between the human V(1b)-R (hV(1b)-R) and SSR149415. Four amino acids located in distinct transmembrane helices (fourth, fifth, and seventh) were found potentially responsible for the hV(1b)-R selectivity. To validate these assumptions, we selectively replaced the leucine 181, methionine 220, alanine 334, and serine 338 residues of hV(1a)-R by their corresponding amino acids present in the hV(1b)-R (phenylalanine 164, threonine 203, methionine 324, and asparagine 328, respectively). Four mutants, which all exhibited nanomolar affinities for vasopressin and good coupling to phospholipase C pathway, were generated. hV(1a) receptors mutated at position 220 and 334 exhibited striking increase in affinity for SSR149415 both in binding and phospholipase C assays at variance with the hV(1a)-R modified at position 181 or 338. In conclusion, this study provides the first structural features concerning the hV(1b)-R and highlights the role of few specific residues in its pharmacological selectivity.  相似文献   

4.
A linear vasopressin antagonist, Phaa-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-Tyr-NH2 (Linear AVP Antag) (Phaa = Phenylacetyl), was monoiodinated at the phenyl moiety of the tyrosylamide residue at position 9. This antagonist appeared to be a highly potent anti-vasopressor peptide with a pA2 value in vivo of 8.94. It was demonstrated to bind to rat liver membrane preparations with a very high affinity (Kd = 0.06 nM). The affinity for the rat uterus oxytocin receptor was lower (Ki = 2.1 nM), and affinities for the rat kidney- and adenohypophysis-vasopressin receptors were much lower (Ki = 47 nM and 92 nM, respectively), resulting in a highly specific vasopressin V1a receptor ligand. Autoradiographical studies using rat brain slices showed that this ligand is a good tool for studies on vasopressin receptor localization and characterization.  相似文献   

5.
A non-peptide, vasopressin V1a receptor-selective antagonist, OPC-21268, exhibited a markedly higher affinity for the rat V1a receptor (Ki = 380 nM) than for the human V1a receptor (Ki = 140 microM). To delineate the region responsible for the high affinity binding of OPC-21268 for the rat V1a receptor, we have constructed a series of chimeric human and rat V1a receptors, and examined the chimeric and point-mutated receptors by competitive radioligand binding analysis. The results showed that the transmembrane domain (TMD) VI-VII of the vasopressin V1a receptor, in particular the amino acid residue Ala-342 in TMD VII, is the major component conferring the rat-selective binding of OPC-21268 to the V1a receptor.  相似文献   

6.
Chemical and photoaffinity cross-linking experiments as well as ligand affinity blotting techniques were used to label the V1 vasopressin receptor. In order to determine the optimal reaction conditions, pig liver membranes were incubated with 5 nM [8-lysine]vasopressin (LVP) labeled with 125I and then cross-linked with the use of DMS (dimethyl suberimidate), EGS [ethylene glycol bis(succinimidyl succinate)] or HSAB (hydroxysuccinimidyl p-azidobenzoate) at different final concentrations. Consistently, EGS was found to label with high yield one band of Mr 60,000 in rat and pig liver membranes when used at a final concentration between 0.05 and 0.25 mM. The protein of Mr 60,000 is labeled in a concentration-dependent manner when pig liver membranes are incubated with increasing concentrations of 125I-LVP and then cross-linked with EGS. The label was displaced by increasing concentrations of unlabeled LVP or d(CH2)5 [Tyr2(Me),-Tyr9(NH2)]AVP (V1/V2 antagonist). A protein band of similar molecular mass was cross-linked with 125I-LVP in rat liver membranes. The reaction was specific since the incorporation of label into the protein of Mr 60,000 was inhibited by LVP, [8-arginine]vasopressin (AVP), the V1/V2-antagonist, and the specific V1-antagonist d(CH2)5 [Tyr2(Me)]AVP, only partially by [des-Gly9]AVP (V2-agonist) and by oxytocin, and not at all by angiotensin II. Incubation of nitrocellulose containing membrane proteins from pig liver with 125I-LVP showed the labeling of a band of Mr 58,000 that is inhibited by an excess of unlabeled LVP. This band of Mr 58,000 seems to correspond with the protein of Mr 60,000 revealed by the cross-linking experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Dear Editor, Vasopressin type 2 receptor(V2R)belongs to the vasopressin(VP)/oxytocin(OT)receptor subfamily of G protein-coupled receptors(GPCRs),which comprises...  相似文献   

8.
Fluorescent, photoreactive, and biotinylated analogs of vasopressin have been prepared in which one of these three groups has been attached to a reactive amino group in either position 4 or position 7. Using solid phase methodology, we have synthesized two active parent compounds, [1-desamino,4-lysine,7-hydroxyproline]arginine vasopressin and [1-desamino,7-aminoproline]arginine vasopressin, and acylated them to obtain biotinyl, azidobenzoyl, and fluoresceinyl derivatives. We have also prepared analogs in which a "spacer arm" was inserted between lysine in position 4 and the marker group. Some of these derivatives have good antidiuretic activity and could be valuable probes in studying hormone-receptor interaction and in receptor visualization and purification.  相似文献   

9.
Moro S  Hoffmann C  Jacobson KA 《Biochemistry》1999,38(12):3498-3507
The P2Y1 receptor is a G protein-coupled receptor (GPCR) and is stimulated by extracellular ADP and ATP. Site-directed mutagenesis of the three extracellular loops (ELs) of the human P2Y1 receptor indicates the existence of two essential disulfide bridges (Cys124 in EL1 and Cys202 in EL2; Cys42 in the N-terminal segment and Cys296 in EL3) and several specific ionic and H-bonding interactions (involving Glu209 and Arg287). Through molecular modeling and molecular dynamics simulations, an energetically sound conformational hypothesis for the receptor has been calculated that includes transmembrane (TM) domains (using the electron density map of rhodopsin as a template), extracellular loops, and a truncated N-terminal region. ATP may be docked in the receptor, both within the previously defined TM cleft and within two other regions of the receptor, termed meta-binding sites, defined by the extracellular loops. The first meta-binding site is located outside of the TM bundle, between EL2 and EL3, and the second higher energy site is positioned immediately underneath EL2. Binding at both the principal TM binding site and the lower energy meta-binding sites potentially affects the observed ligand potency. In meta-binding site I, the side chain of Glu209 (EL2) is within hydrogen-bonding distance (2.8 A) of the ribose O3', and Arg287 (EL3) coordinates both alpha- and beta-phosphates of the triphosphate chain, consistent with the insensitivity in potency of the 5'-monophosphate agonist, HT-AMP, to mutation of Arg287 to Lys. Moreover, the selective reduction in potency of 3'NH2-ATP in activating the E209R mutant receptor is consistent with the hypothesis of direct contact between EL2 and nucleotide ligands. Our findings support ATP binding to at least two distinct domains of the P2Y1 receptor, both outside and within the TM core. The two disulfide bridges present in the human P2Y1 receptor play a major role in the structure and stability of the receptor, to constrain the loops within the receptor, specifically stretching the EL2 over the opening of the TM cleft and thus defining the path of access to the binding site.  相似文献   

10.
Summary Concentrations and fluxes of amino acids across the portal-drained viscera (PDV) and liver were assessed in rats fed a meal of one of three arginine-deficient diets containing either alanine or the arginine precursors, ornithine or citrulline. A previous report included findings of seven arginine-related amino acids and indicated that only the citrulline-containing diet protected blood arginine concentrations. In the present report we extend these findings and note that the concentrations and fluxes of the non-arginine-related amino acids showed remarkable consistency across diet groups. However, total branched-chain amino acid (BCAA) concentrations of arterial blood were higher in rats fed the - Arg/+ Ala and the - Arg/+ Orn diets than in rats fed the control (+ Arg) diet. The elevated BCAA correlated with higher circulating concentrations of other essential amino acids but were inversely correlated with arginine concentrations. PDV and hepatic fluxes of BCAA were not different across diet groups, indicating that amino acid absorption and hepatic utilization of BCAA were generally comparable across diet groups. Hepatic concentrations of 14 of 22 measured amino acids, including total BCAA, were correlated with their arterial concentrations. The circulating concentrations and net PDV and hepatic fluxes of rats fed the control diet were comparable to our previous observations in fed rats and illustrate the role of the liver in utilization of diet-derived essential amino acids.Abbreviations PDV portal-drained viscera - BCAA branched-chain amino acids - SSA 5-sulfosalicylic acid - PBF portal blood flow - HBF hepatic blood flow - SELSM pooled standard errors of least squares means - TAA total amino acids - NEAA nonessential amino acids - EAA essential amino acids - LNAA large neutral amino acids Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

11.
Since iodination of the tyrosine residue in the pressin ring of vasopressins abolishes binding to the V2 (renal) isoreceptor, the low specific activity tritiated vasopressins have been the only radioligands available for this receptor. Alternative vasopressin radioligands are described in the present study. N-tert-Butoxycarbonyl- (N-t-Boc) 125I-tyrosine or [35S]methionine were conjugated to the 8th amino acid of lysine- (LVP) or deamino-ornithine-vasopressin via active succinimidyl esters. Following the purification on C-18 reverse-phase high pressure liquid chromatography, t-Boc removal, and a second high pressure liquid chromatography purification, specific activities of 2200 and 1300 Ci/mmol were obtained for the 125I- and the 35S-labeled ligands, respectively. These vasopressin analogues, conjugated outside the pressin ring, were found to bind with high affinity to the V1A (vascular) and V2 vasopressin isoreceptors (Kd less than or equal to 10(-9) M) and to retain the full biological activity of intact vasopressin. The present study demonstrates the possibility of producing high specific activity radioligands with high affinity for the V1A and V2 vasopressin isoreceptors by conjugating labeled moieties to the 8th amino acid of vasopressin analogues. Since these new radioligands have specific activities much higher than the tritiated ligands (1300-2200 versus 10-30 Ci/mmol), they should provide considerable advantages in the future study of the physiology and biochemistry of the AVP receptors.  相似文献   

12.
[(3)H]SSR-149415 is the first tritiated nonpeptide vasopressin V(1b) receptor (V(1b)R) antagonist ligand. It was used for studying rodent (mouse, rat, hamster) and human V(1b)R from native or recombinant origin. Moreover, a close comparison between the human and the mouse V(1b)R was performed using SSR-149415/[(3)H]SSR-149415 in binding and functional studies in vitro. [(3)H]SSR-149415 binding was time-dependent, reversible, and saturable. Scatchard plot analysis gave a single class of high-affinity binding sites with apparent equilibrium dissociation constant (K(d)) approximately 1 nM and maximum binding density (B(max)) values from 7,000 to 300,000 sites/cell according to the cell line. In competition experiments, [(3)H]SSR-149415 binding was stereospecific and dose-dependently displaced by reference peptide and nonpeptide arginine vasopressin (AVP)/OT ligands following a V(1b) rank order of affinity: SSR-149415 = AVP > dCha > dPen > dPal > dDavp > SSR-126768A > SR-49059 > SSR-149424 > OT > SR-121463B. Species differences between human, rat, mouse, and hamster V(1b)R were observed. Autoradiography studies with [(3)H]SSR-149415 on rat and human pituitary showed intense specific labeling confined to corticotroph cells and absence of labeling in the other tissues examined. SSR-149415 potently and stereospecifically antagonized the AVP-induced inositol phosphate production and intracellular Ca(2+) increase (EC(50) from 1.83 to 3.05 nM) in recombinant cell lines expressing either the mouse or the human V(1b)R. AVP (10(-7) M) exposure of AtT20 cells expressing mouse or human EGFP-tagged V(1b)R induced their rapid internalization. Preincubation with 10(-6) M SSR-149415 counteracted the internalization process. Moreover, recycling of internalized receptors was observed upon 10(-6) M SSR-149415 treatment. Thus SSR-149415/[(3)H]SSR-149415 are unique tools for studying animal and human V(1b)R.  相似文献   

13.
Cultured NIH-3T3 cells were transfected with cDNA constructs encoding human epidermal growth factor-receptor (EGF-R)* and two deletion mutants in the extracellular portion of the receptor molecule. One mutant is devoid of 124 amino-terminal amino acids, and the other lacks 76 residues. Mutant receptors were not delivered to the cell surface unless the transfected cells contained also endogenous EGF-Rs, suggesting that receptor interaction complements the mutation and allows surface display of mutant receptors. Immunoprecipitation experiments revealed an association between mutant and endogenous EGF-Rs when both proteins were expressed in the same cell. Hence, receptor-oligomers may exist in the plane of the membrane even in the absence of ligand binding, and oligomerization may play a role in normal trafficking of EGF-Rs to the cell surface. Mutant receptors retained partial ligand binding activity as 125I-labeled EGF was covalently cross-linked to both mutant receptors, and EGF stimulated, albeit weakly, their protein tyrosine kinase activity. Both mutant EGF-Rs bind EGF with a 10-fold lower affinity than that of the solubilized wild type EGF-R. These results provide further evidence that the region flanked by the two cysteine-rich domains plays a crucial role in defining ligand-binding specificity of EGF-R.  相似文献   

14.
Discrete peptide domains within the primary sequence of cell-surface receptor glycoproteins are believed to regulate not only their function but also their targeting to the cell membrane. To identify sequence elements required for intracellular transport and ligand binding by the human Tac interleukin-2 (IL-2) receptor, we prepared expression plasmids encoding a series of artificially mutated or naturally occurring variants of the Tac cDNA. In particular, we sought to further delineate the functional role of the sequences contributed by each of the eight exons that together encode the Tac protein. Deletion of exons 5 through 8 of the receptor had no detectable effect on IL-2 binding or intracellular transport of the Tac protein, and resulted in secreted forms of this IL-2-binding protein. Removal of sequences corresponding to all of exon 4 ablated IL-2 binding activity yet still permitted transport to the cell surface. In contrast, partial deletion of exon 4 sequences resulted in proteins that not only lacked IL-2 binding activity but also were sequestered within the endoplasmic reticulum. Removal of one or both of the N-linked glycosylation sites present in the Tac protein did not impair receptor transport or ligand binding. These results demonstrate that exon 4 of the Tac gene encodes amino acid residues that play an important role in regulating both the intracellular transport and function of this IL-2 receptor.  相似文献   

15.
16.
The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype‐selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120‐fold) for the D4 subtype of dopamine receptor were tested on wild‐type and mutant D2 receptors. Five of the selective ligands were observed to have 21‐fold to 293‐fold increases in D2 receptor affinity when three non‐conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3‐{[4‐(4‐iodophenyl) piperazin‐1‐yl]methyl}‐1H‐pyrrolo[2,3‐b]pyridine (L‐750,667) and 1‐[4‐iodobenzyl]‐4‐[N‐(3‐isopropoxy‐2‐pyridinyl)‐N‐methyl]‐aminopiperidine (RBI‐257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild‐type receptor, concentrations of L‐750,667 or RBI‐257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild‐type D2 receptor. In contrast to RBI‐257 which is an antagonist at all receptors, L‐750,667 is a partial agonist at the wild‐type D2 but an antagonist at both the mutant D2 and wild‐type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non‐conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermolecular steric contacts between the ligands and receptors. Consistent with the experimental data, this model illustrates the interactions between a variety of subtype‐selective ligands and the wild‐type D2, mutant D2, or wild‐type D4 receptors.  相似文献   

17.
To visualize cell surface V1a vasopressin receptors in rat hepatocytes in the absence of receptor-mediated endocytosis, we used a high-affinity fluorescent linear antagonist, Rhm8-PVA. Epifluorescence microscopy (3CCD camera) and fluorescence spectroscopy were used. Rhm8-PVA alone did not stimulate Ca2+ signals and competitively blocked Ca2+ signals (Kinact of 3.0 nM) evoked by arginine vasopressin (vasopressin). When rat hepatocytes were incubated with 10 nM of Rhm8-PVA for 30 min at 4C, the fluorescent antagonist bound to the surface of cells, presumably the plasma membrane. The V1a receptor specificity of Rhm8-PVA binding was confirmed by its displacement by the nonfluorescent antagonist V4253 and by the natural hormone vasopressin at 4C. Prior vasopressin-mediated endocytosis of V1a receptors at 37C abolished binding of the labeled antagonist, whereas in non-preincubated cells, Rhm8-PVA labeled the cell surface of rat hepatocytes. When cells labeled with Rhm8-PVA at 4C were warmed to 37C to initiate receptor-mediated internalization of the fluorescent complex, Rhm8-PVA remained at the cell surface. Incubation temperature at 4C or 37C had little effect on binding of Rhm8-PVA. We conclude that Rhm8-PVA is unable to evoke receptor-mediated endocytosis and can readily be used to visualize cell surface receptors in living cells.  相似文献   

18.
19.
Kainate receptors (KARs) modulate synaptic transmission at both pre-synaptic and post-synaptic sites. The overlap in the distribution of KA-2 and GluR6/7 subunits in several brain regions suggests the co-assembly of these subunits in native KARs. The molecular mechanisms that control the assembly and surface expression of KARs are unknown. Unlike GluR5-7, the KA-2 subunit is unable to form functional homomeric KAR channels. We expressed the KA-2 subunit alone or in combination with other KAR subunits in HEK-293 cells. The cell surface expression of the KAR subunit homo- and heteromers were analysed using biotinylation and agonist-stimulated cobalt uptake. While GluR6 or GluR7 homomers were expressed on the cell surface, KA-2 alone was retained within the endoplasmic reticulum. We found that the cell surface expression of KA-2 was dramatically increased by co-expression with either of the low-affinity KAR subunits GluR5-7. However, co-expression with other related ionotropic glutamate receptor subunits (GluR1 and NR1) does not facilitate the cell surface expression of KA-2. The analysis of subcellular fractions of neocortex revealed that synaptic KARs have a relatively high KA-2 content compared to microsomal ones. Thus, KA-2 is likely to contain an endoplasmic reticulum retention signal that is shielded on assembly with other KAR subunits.  相似文献   

20.
The third intracellular (3i) loops of the alpha 2A- and alpha 2B-adrenergic receptor (AR) subtypes are critical for retention of these receptors at the basolateral surface of polarized Madin-Darby canine kidney (MDCKII) cells at steady state. The third intracellular loops of the alpha 2A, alpha 2B, and alpha 2C-AR subtypes interact with spinophilin, a multidomain protein that, like the three alpha 2-AR subtypes, is enriched at the basolateral surface of MDCKII cells. The present studies provide evidence that alpha 2-AR interaction with spinophilin contributes to cell surface stabilization of the receptor. We exploited the unique targeting profile of the alpha 2B-AR subtype in MDCKII cells: random delivery to apical and basolateral surfaces with rapid (t(1/2) < or = 60 min) apical versus slower (t(1/2) = 10-12 h) basolateral turnover. Apical delivery of a spinophilin subdomain containing the alpha 2-AR-interacting region (Sp151-483) by fusion with apically targeted p75NTR extended the half-life of alpha 2B-AR at the apical surface to approximately 3.6 h and eliminated the rapid phase (0-60 min) of alpha 2B-AR turnover on that surface. Furthermore, we examined alpha 2B-AR turnover at the surface of mouse embryo fibroblasts derived from wild type (Sp+/+) or spinophilin knock-out (Sp-/-) mice. Two independent experimental approaches demonstrated that agonist-evoked internalization of HA-alpha 2B-AR was accelerated in mouse embryo fibroblasts derived from Sp-/- mice. These findings are consistent with the interpretation that endogenous spinophilin contributes to the stabilization of alpha 2B-AR and presumably all three alpha2-AR subtypes at the surface of target cells and may act as a scaffold that could link alpha 2-ARs to proteins interacting with spinophilin via other domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号