首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An anti-peptide antibody has been produced which binds to and specifically inhibits the activity of cytochrome P-450IA2 in rat hepatic microsomes. This was achieved by raising an antibody against a synthetic peptide (Ser-Glu-Asn-Tyr-Lys-Asp-Asn), the sequence of which occurs in cytochrome P-450IA2 at positions 290-296. The selection of this region of cytochrome P-450IA2 was based on several criteria, including prediction of surface and loop areas, identification of variable regions between cytochromes P-450IA2 and P-450IA1, and consideration of a site on cytochrome P-450IA1 where chemical modification has been shown to cause substantial enzyme inactivation. The specificity of antibody binding was determined by enzyme-linked immunosorbent assay and by immunoblotting using hepatic microsomal preparations and purified cytochrome P-450 isoenzymes. This showed that the antibody binds specifically to rat and mouse cytochrome P-450IA2 and to no other cytochrome P-450, as was predicted from the amino acid sequences of the peptide and the cytochromes P-450. The effect of the antibody upon enzyme activity was studied in hepatic microsomes from rats treated with 3-methylcholanthrene. The antibody was shown to inhibit specifically the activity of reactions catalysed by cytochrome P-450IA2 (phenacetin O-de-ethylase and 2-acetylaminofluorene activation), but had no effect on aryl hydrocarbon hydroxylase activity, which is catalysed by cytochrome P-450IA1, or on aflatoxin B1 activation.  相似文献   

2.
The induction response of cytochrome P-450-dependent enzyme activities to a single low (5 nmol/kg) or high (50 nmol/kg, intraperitoneal [ip] dose of TCDD was examined in liver and lung homogenates over a 12-week time course in an outbred, Ah-responsive strain of mice (National Institutes of Health [NIH] Swiss). Total hepatic cytochrome P-450 was quantified, and the dealkylation of ethoxy- and benzyloxyresorufin (activities of P-450 IA1 and IIB1, respectively) were measured in both tissues at 48 and 96 hr and at 1, 4, and 12 weeks post-TCDD administration. Western immunoblotting with monoclonal antibody 1-7-1 was conducted to confirm the specific IA1-inductive effects of each dose of TCDD over the same time course. Following the low dose, specific IA1 induction was apparent in liver at the earliest time point, was maximal at 1 week, and declined to control values at 12 weeks. Pulmonary IA1 was near-maximally induced at 48 hr, and remained at that level for 4 weeks. In contrast, a tenfold higher dose of TCDD elicited similar IA1 induction profiles for both tissues, with a maximum at 1 week and a progressive loss at 4 and 12 weeks postexposure. P-450 IIB1 activity was elevated in TCDD-treated animals by enzymatic assay; however, Western immunoblotting did not confirm this finding. These data demonstrate persistent dose-dependent P450 induction over many weeks by a single TCDD dose, with significant organ-specific differences: (a) lung is more sensitive than liver to a nonmaximal inducing dose of TCDD, and (b) at a maximally inducing dose of TCDD, lung is very similar to liver in both the level and time course of IA1 induction.  相似文献   

3.
Rabbits exhibit phenotypic differences, 21H and 21L, in the rate of hepatic progesterone 21-hydroxylation that reflect 10-fold higher microsomal concentrations of cytochrome P-450 1 in 21H rabbits. A cDNA library in pBR322 was prepared from liver mRNA isolated from a 21H rabbit. A clone, p1-8, producing a hybrid protein resulting from the insertion of the cDNA into the beta-lactamase gene of the plasmid expressed 5 distinct epitopes that were recognized by a panel of monoclonal antibodies developed toward P-450 1. RNAs selected from total hepatic mRNA by filter hybridization with p1-8 yield at least two electrophoretically distinct proteins when translated in vitro and immunoprecipitated with the 3C3 monoclonal antibody. Only one of the two proteins is recognized by the 1F11 monoclonal antibody, which is highly specific for P-450 1, and the immunoprecipitated protein exhibits the electrophoretic mobility of P-450 1. The other protein remains unidentified. Northern blot analysis indicates that the 3' noncoding portion of p1-8 hybridizes to higher steady state concentrations of polyadenylated RNA in the 21H as compared to 21L rabbits. This correspondence in expression with that of P-450 1 in the 21H and 21L phenotypes further suggests that p1-8 encodes P-450 1 or a closely related protein. The cDNA is 1871 base pairs in length and encodes a protein of 487 amino acids. Southern blot analysis indicates that several independent, gene-like sequences hybridize with the 3' noncoding region of p1-8 under conditions of high stringency. These results indicate that P-450 1 is a member of an extensive multigene family.  相似文献   

4.
1. A comparison was made between rat hepatic and plant microsomal cytochrome P-450 and cytochrome P-450 linked enzymic activities. 2. The results show that, compared with plant microsomes, rat hepatic microsomal protein concentrations were 165-fold higher, and rat hepatic cytochrome P-450 concentration were 32-fold higher. 3. Rat hepatic Cytochrome P-450 linked enzyme activities were 1765-fold and 25-fold greater when compared with plant microsomes using aldrin and biphenyl as substrates, respectively. 4. Rats metabolised biphenyl to 2- and 4-hydroxybiphenyl, whereas plants produced only the latter metabolite. 5. Pretreatment of rats and plant tissues with biphenyl, Aroclor 1248 and the sodium salt of phenobarbital increased significantly the microsomal protein concentrations, and enzyme activities linked to cytochrome P-450. 6. Unlike rat microsomes, those of plants were unable to metabolise halosubstituted biphenyls at measurable rates.  相似文献   

5.
1. Polychlorinated biphenyls (PCB) are abundant and persistent pollutants in the ecosystem. Commercial mixtures (e.g. Aroclor 1254) can contain up to 80 different isomers and congeners, many of which accumulate in biological systems by the ingestion of PCB-contaminated lipid components of food chains. 2. Commercial mixtures of PCB induce, in hepatic microsomal membranes in vivo, a variety of different forms of the cytochrome P-450 components of enzyme systems involved in the metabolism of drugs and other xenobiotics, and can also induce the proliferation of this membrane. Since these microsomal enzyme systems share a number of the requirements of microsomal fatty acid desaturases, we have investigated whether the induction by PCB in vivo of cytochrome-P-450-linked enzymes in the proliferating hepatic microsomal membrane of the pigeon and the rat is accompanied by increased proportions of polyunsaturated fatty acids in this membrane. 3. The most striking changes observed 120 h after treating pigeons and rats with 1.5 mmol Aroclor 1254/kg body mass were 2.2-fold and 1.6-fold increases, respectively, in the proportion of arachidonic acid in the hepatic microsomal membrane. When the effects of this treatment on the proliferation of this membrane and increase in liver mass are taken into account, the amount of arachidonic acid in the total microsomal membrane of pigeon and rat livers increased 6.7-fold and 1.9-fold, respectively. 4. These changes were accompanied by very significant increases in pigeons and rats of the concentration of hepatic microsomal cytochrome P-450, and in the activity in microsomal protein of a wide range of cytochrome P-450-dependent enzyme involved in the metabolism of drugs and other xenobiotics. 5. This effect of PCB, of increasing in vivo the degree of unsaturation of fatty acids of hepatic microsomal membrane, appears to be a novel finding, and does not seem to have been investigated for other drugs and xenobiotics. Preliminary results have shown that the effect is accompanied by substantial increases in the total activity of delta 6 and delta 5 microsomal fatty acid desaturases converting 18:2 (9, 12) (linoleic acid) to 20:4 (5, 8, 11, 14) (arachidonic acid) [Borlakoglu, J.T., Dils, R.R., Edwards-Webb, J.D. & Walker, C.H. (1988) Biochem. Soc. Trans. 16, 1072]. 6. It is postulated that there is a significant link between increased fatty acid desaturation and the induction of cytochrome-P-450-linked enzymes, and this is discussed in terms of the mechanisms involved in the metabolism of foreign compounds.  相似文献   

6.
Monoclonal antibodies developed to cytochrome P-450 1, some of which react with proteins in addition to P-450 1, were used to investigate the differential expression of P-450 1 dependent 21-hydroxylase activity in renal tissue of rabbits exhibiting differences in hepatic 21-hydroxylase activity. Using immunohistochemical techniques, the monoclonal antibodies, 2F5 and 3C3, localized protein in the S2 and S3 segments of the proximal tubule in the renal cortex. These two monoclonal antibodies, 2F5 and 3C3, reacted with a kidney protein that migrated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a relative electrophoretic mobility that did not correspond to known rabbit hepatic isozymes and was termed P-450 K. Antibodies specific for P-450 1 and 3b, 1F11 and 8-27, respectively, produced no staining in kidney. The protein recognized by the 2F5 and 3C3 antibodies is immunologically distinct from cytochrome P-450s 1, 2, and 3b. The rate of 21-hydroxylation of progesterone was shown to be approximately 100-fold less in kidney than liver microsomes where this pathway is largely catalyzed by P-450 1. The activity of the kidney microsomes was not inhibited by antibodies directed to P-450 1. In addition, the variation observed for the 21-hydroxylase activity in the hepatic microsomal fraction of outbred New Zealand white rabbits was not evident in kidney microsomes from these same animals. The 2F5 antibody was found, however, to be inhibitory (about 50%) of the 11-hydroxylation of lauric acid in kidney microsomes. This suggests that P-450 K participates in lauric acid 11-hydroxylase activity. The treatment of rabbits with phenobarbital, but not 2,3,7,8-tetrachlorodibenzo-p-dioxin, was found to induce the levels of P-450 K.  相似文献   

7.
The rat kidney microsomal epoxygenase catalyzed the asymmetric epoxidation of arachidonic acid to generate as major products: 8(R),9(S)-, 11(R),12(S)- and 14(S),15(R)-epoxyeicosatrienoic acids with optical purities of 97, 88, and 70%, respectively. Inhibition studies utilizing a panel of polyclonal antibodies to several rat liver cytochrome P-450 isoforms, indicated that the renal epoxygenase(s) belongs to the cytochrome P-450 2C gene family. Dietary salt, administered either as a 2-2.5% (w/v) solution in the drinking water or as a modified solid diet containing 8% NaCl (w/w), resulted in marked and selective increases in the renal microsomal epoxygenase activity (416 and 260% of controls, for the liquid and solid forms of NaCl, respectively) with no significant changes in the microsomal omega/omega-1 oxygenase or in the hepatic arachidonic acid monooxygenase reaction. Immunoblotting studies demonstrated that dietary salt induced marked increases in the concentration of a cytochrome P-450 isoform(s) recognized by polyclonal antibodies raised against human liver cytochrome P-450 2C10 or rat liver cytochrome P-450 2C11. Comparisons of the stereochemical selectivity of the induced and non-induced microsomal epoxygenase(s) with that of purified rat liver cytochrome P-450 2C11 suggest that the salt-induced protein(s) is catalytically and structurally different from liver cytochrome P-450 2C11. The in vivo significance of dietary salt in regulating the activities of the kidney endogenous arachidonic acid epoxygenase was established by the demonstration of a salt-induced 10-20-fold increase in the urinary output of epoxygenase metabolites. These results, in conjunction with published evidence demonstrating the potent biological activities of its metabolites, suggest a role for the epoxygenase in the renal response to dietary salt.  相似文献   

8.
A monoclonal antibody specific for cytochrome P-450 1 that extensively (greater than 95%) inhibits the hepatic 21-hydroxylation of progesterone was used in a two-site immunoradiometric assay to estimate the concentration of cytochrome P-450 1 in microsomes prepared from 24 individual, untreated New Zealand White rabbits. The progesterone 21-hydroxylase activities of these microsomes ranged from 0.2 to 5.8 nmol min-1 mg microsomal protein-1. Scatchard analysis revealed similar slopes and thus apparent affinities between the antibody and microsome samples that varied greater than 10-fold in 21-hydroxylase activity. The maximal extent of binding of the antibody to different microsomal preparations was greater for microsomes exhibiting high as compared to low 21-hydroxylase activity, suggesting that the level of binding reflects the microsomal content of P-450 1. Quantitation was based on the extent of binding of the 125I-labeled monoclonal antibody to P-450 1 sequestered from a sample by a heterologous monoclonal antibody adsorbed to the wells of a microtiter plate. These results indicate that the microsomal content of P-450 1 varies from less than 0.05 to 0.5 nmol/mg microsomal protein. The microsomal content of this antigen as determined in the two-site immunoradiometric assay was highly correlated (r = 0.97) with progesterone 21-hydroxylase activity. Linear regression analysis was used to estimate the turnover number for progesterone in situ, yielding a value of 11 nmol deoxycorticosterone formed min-1 nmol microsomal P-450 1(-1). This is similar to the value of 14 nmol deoxycorticosterone formed min-1 nmol-1 obtained for the reconstituted, purified P-450 1 used as a standard in the immunoquantitation assay.  相似文献   

9.
1. The comparative activity of hepatic cytochrome P-450 monooxygenase system, glucuronyl-transferase, glutathione S-transferase and N-acetyltransferase was studied in three-month-old male and female Lacaune lambs and male Saanen kids. 2. The study of mixed-function oxidase components showed that total cytochrome P-450 ranged from 0.54 in kids to 0.85-0.88 nmol/mg-1 in lambs. Male lambs had higher levels than kids (122-165%) for aminopyrine, benzphetamine, ethylmorphine and erythromycin demethylases or benzo(a)pyrene hydroxylase whereas NADPH-cytochrome c reductase was 1.19-fold lower in lambs. 3. Sex-related changes were observed in lambs in case of microsomal benzo(a)pyrene hydroxylase activity which appeared 1.31-fold more potent in male liver. Cytosolic N-acetyltransferase accepting sulfamethazine as substrate was about 8-fold higher in female than in male lambs. 4. The analysis of samples from various liver lobes, indicated the heterogenous distribution of microsomal proteins which is related to higher concentrations of both cytochrome b5, NADPH-cytochrome c reductase and p-nitrophenol glucuronyltransferase in left lobes.  相似文献   

10.
1. Polychlorinated biphenyls (PCBs) are abundant and persistent pollutants in the ecosystem which accumulate in biological systems. 2. We have shown previously (Borlakoglu et al., 1990; Eur. J. Biochem. 118, 327-332) that 120 hr after treating pigeons and rats with 1.5 mmol Aroclor 1254/kg body weight, hepatic microsomal membranes showed significant increases in the proportion of arachidonate (20:4,5, 8,11,14), in the concentration of cytochrome P-450 and in the activities of a wide range of cytochrome P-450-dependent enzymes involved in the metabolism of drugs and other xenobiotics. 3. After treating pigeons and rats in vivo with Aroclor 1254, linoleate desaturases activity increased significantly 3.35-, 4.35-, 5.83- and 8.61-fold 24, 48, 68 and 120 hr for pigeons and 2- and 7-fold for rats respectively 48 and 120 hr post treatment. The total activity of linoleate desaturases in the whole liver of pigeons and rats increased 40- and 10-fold respectively. 4. There were excellent correlations between the concentrations of cytochrome b5 and cytochrome P-450 and the activity of pigeon linoleate desaturases. Extrapolation of the concentration of cytochrome P-450 to zero is coincident with zero linoleate desaturase activity. 5. Evidence is presented to suggest the novel concept that linoleate desaturation is dependent upon the catalytic cycle of these monooxygenases.  相似文献   

11.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

12.
Effect of acute exposure (24 hr) to different oral doses of dimethoate on hepatic microsomal cytochrome P-450 (Cyt. P-450) content and cytosolic glutathione S-transferase (GST) activity were determined in pigeon and rat to ascertain difference in the metabolic response as a measure of species selective toxicity. Dimethoate at five different doses caused a statistically significant decrease in Cyt. P-450 content both in pigeon and rat. However, reduction in GST activity was significant at three doses in pigeon and at high dose in rat. Thus, a different quantum of hepatic Cyt. P-450 decrease and a differed response of GST activity against dimethoate exposure in pigeon and rat may be one of the possible causes for relatively higher toxicity of dimethoate in birds.  相似文献   

13.
1. Of 87 chemicals tested for their ability to interact with oxidized hepatic cytochrome P-450 from mature male brook trout (Salvelinus fontinalis), 21 formed detectable type I or type II binding spectra. 2. When 8 of these 21 chemicals were tested with cytochrome P-450 of nine other species of freshwater fish, wide species variation in hepatic microsomal cytochrome P-450 was evident, since the spectral size of chemical interactions as related to the carbon monoxide spectrum and the ratio of type II to type I binding were not alike. 3. These spectral data suggest that hepatic microsomal cytochrome P-450 of freshwater fish exists in different forms.  相似文献   

14.
Accelerated hepatic haem catabolism in the selenium-deficient rat.   总被引:1,自引:1,他引:0       下载免费PDF全文
1. Hepatic microsomal cytochrome P-450 concentrations are lower in selenium-deficient rats treated with phenobarbital for 4 days than in similarly treated control rats. 2. No defect in haem synthesis was found on the basis of measurements of delta-aminolaevulinate synthase (EC 2.3.1.37), delta-aminolaevulinate dehydratase (EC 4.2.1.24) and ferrochelatase (EC 4.99.1.1) activities, and urinary excretion of delta-aminolaevulinate, porphobilinogen, uroporphyrin and coproporphyrin. 3. No defect in apo-(cytochrome P-450) separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. 4. An increase in haem catabolism was found. An 8-fold increase in hepatic microsomal haem oxygenase (EC 1.14.99.3) activity occurred in selenium-deficient rats after phenobarbital treatment, compared with a less than 2-fold increase in control rats. Also excretion of 14CO in the breath after administration of delta-amino[5-14C]laevulinate was greater by phenobarbital-treated selenium-deficient rats than by similarly treated controls. 5. These studies demonstrate that the defective induction of cytochrome P-450 by phenobarbital in selenium-deficient rats is accompanied by increased haem catabolism. This could be due to increased breakdown of cytochrome P-450 or to catabolism of haem before it attaches to the apo-cytochrome. The role of selenium in stabilizing cytochrome P-450 and/or in protecting haem from breakdown remains to be determined.  相似文献   

15.
The biochemical basis for the complex effects of the anti-cancer drug cisplatin on hepatic cytochrome P-450 activity was studied in adult male rat liver using P-450 form-specific steroid hydroxylase assays and antibody probes. Cisplatin treatment of adult male rats resulted in a marked and prolonged feminization of the pattern of P-450 enzymes expressed in hepatic tissue. The adult male-specific cytochrome P-450 forms designated P-450 2c (P-450 gene IIC11), P-450 2a (gene IIIA2), and P-450 RLM2 were decreased by 70-90% after 7-14 days, with parallel decreases in their respectively associated microsomal steroid hydroxylase activities. Concomitantly, hepatic levels of the female-predominant enzymes P-450 3 (gene IIA1) and P-450j (gene IIE1) were elevated approximately 2-4-fold. The female-specific microsomal enzyme androstenedione 5 alpha-reductase was induced approximately 20-fold by cisplatin; however, no elevation of the female-specific P-450 2d was detected. The underlying hormonal basis for these effects of cisplatin was then examined. Serum testosterone levels were found to be depleted by cisplatin in a time- and dose-dependent manner which correlated with the observed changes in these hepatic enzymes. Furthermore, castration of adult rats altered the profile of these enzymes in a manner which resembled that observed with cisplatin treatment, suggesting that androgen depletion was the primary cause for the observed feminization of hepatic enzyme expression. Consistent with this possibility, the synthetic androgen methyltrienolone effectively blocked the changes in hepatic enzyme expression induced by cisplatin. Moreover, hepatic enzyme feminization was significantly reversed by chorionic gonadotropin, which fully restored serum testosterone levels in the cisplatin-treated rat. Luteinizing hormone-releasing hormone challenge experiments demonstrated that the responsiveness of the pituitary to this hypothalamic regulator of testicular androgen production was unimpaired by cisplatin treatment, indicating that hypothalamic production or secretion of luteinizing hormone-releasing hormone may be deficient in the cisplatin-treated animals. These studies establish that the effects of cisplatin on hepatic P-450 enzyme expression result from its interruption of the hypothalamic-pituitary stimulation of testicular androgen production and that this, in turn, leads to a depletion of circulating androgens required for maintenance of normal P-450 enzyme expression in adult male rats.  相似文献   

16.
In principle, target inactivation analysis provides a means of determining the molecular weights (Mr) and states of aggregation of proteins in native environments where they are functionally active. We applied this irradiation technique to the rat liver microsomal membrane proteins: cytochrome b5, epoxide hydrolase, flavin-containing monooxygenase, NADH-ferricyanide reductase, NADPH-cytochrome P-450 reductase, and seven different forms of cytochrome P-450. Catalytic activities, spectral analysis of prosthetic groups, and sodium dodecyl sulfate-polyacrylamide electrophoresis/peroxidase-coupled immunoblotting were used to estimate apparent Mr values in rat liver microsomal membranes. Except in one case (cytochrome P-450PCN-E), the estimated Mr corresponded most closely to that of a monomer. Purified cytochrome P-450PB-B, NADPH-cytochrome P-450 reductase and epoxide hydrolase were also subjected to target inactivation analysis, and the results also suggested monomeric structures for all three proteins under these conditions. However, previous hydrodynamic and gel-exclusion results clearly indicate that all three of these proteins are oligomeric under these conditions. The discrepancy between target inactivation Mr estimates and hydrodynamic results is attributed to a lack of energy transfer between monomeric units. Thus, while P-450PCN-E may be oligomeric in microsomal membranes, target inactivation analysis does not appear to give conclusive results regarding the states of aggregation of these microsomal proteins.  相似文献   

17.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

18.
A novel human liver cytochrome P-450 isozyme (P-450-AA), which catalyzes arachidonic acid epoxidation, has been purified to electrophoretic homogeneity from human liver. As judged spectrally, the newly described isozyme is low spin in the oxidized state, with a soret band at 415 nm and an increased maximum at 451 nm in the CO-difference spectrum. Cytochrome P-450-AA appeared homogeneous as judged by the appearance of a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 53,100. Although cytochrome P-450-AA had a relatively low specific content of 10.8 nmol/mg, it possessed a high activity of arachidonic acid epoxidation. The P-450-AA oxidized arachidonic acid in a reconstituted system into the four regioisomeric epoxyeicosatrienoic acids (EETs) (5, 6-, 8, 9-, 11, 12-, 14, 15-EETs) at a rate of 2,010 pmol/nmol/min, a rate which is 37-fold higher than that observed with the crude microsomal preparation. Moreover, the purified cytochrome P-450-AA catalyzed the de-ethylation of 7-ethoxyresorufin at the rate of 2970 pmol/nmol/min, whereas other cytochrome P-450-dependent reactions were carried out at 23-2,000-fold lower rates and ranged between 0.3-130 pmol/nmol/min. The amino acid composition is different from that of other cytochrome P-450 isozymes. The NH2-terminal sequence of 20-amino acid residues was compared to that of LM2 and PB2-B2, the phenobarbital-induced forms in rabbit and rats, respectively. Comparison was also made with two forms of human cytochrome P-450, HLc and HLd. There were 7/20 identical residues for P-450-AA and LM2 and 4/20 for P-450-AA and PB2-B2. There were 2/20 identical residues for P-450-AA and HLd, and no identical residues were found for HLc. We conclude that the biologically active EETs, are formed by a distinct and unique P-450 isozyme from human liver and that arachidonic acid can serve as a screen for detection of the novel P-450 isozyme.  相似文献   

19.
The metabolism of the dihydropyridine calcium antagonist and vasodilator nifedipine has been reported to exhibit polymorphism among individual humans (Kleinbloesem, C. H., van Brummelen, P., Faber, H., Danhof, M., Vermeulen, N. P. E., and Breimer, D.D. (1984) Biochem. Pharmacol. 33, 3721-3724). Nifedipine oxidation has been shown to be catalyzed by cytochrome P-450 (P-450) enzymes. Reconstitution, immunoinhibition, and induction studies with rat liver indicated that the forms designated P-450UT-A and P-450PCN-E are the major contributors to microsomal nifedipine oxidation. The P-450 which oxidizes nifedipine (P-450NF) was purified to electrophoretic homogeneity from several human liver samples. Antibodies raised to P-450NF were highly specific as judged by immunoblotting analysis and inhibited greater than 90% of the nifedipine oxidase activity in human liver microsomes. A monoclonal antibody raised to the human P-450 preparation reacted with both human P-450NF and rat P-450PCN-E. Immunoblotting analysis of 39 human liver microsomal samples using anti-P-450NF antibodies revealed the same 52,000-dalton polypeptide, corresponding to P-450NF, with only one of the microsomal samples showing an additional immunoreactive protein. The level of nifedipine oxidase activity was highly correlated with the amount of P-450NF thus detected using either polyclonal (r = 0.78) or monoclonal (r = 0.65) antibodies, suggesting that the amount of the P-450NF polypeptide may be a major factor in influencing the level of catalytic activity in humans as well as rats. Cytochrome b5 enhanced the catalytic activity of reconstituted P-450NF, and anti-cytochrome b5 inhibited nifedipine oxidase activity in human liver microsomes. P-450NF also appears to be a major contributor to human liver microsomal aldrin epoxidation, d-benzphetamine N-demethylation, 17 beta-estradiol 2- and 4-hydroxylation, and testosterone 6 beta-hydroxylation, the major pathway for oxidation of this androgen in human liver microsomes.  相似文献   

20.
Steroid 17 alpha-hydroxylase has emerged as a key enzyme in steroidogenic cells: (i) it represents the branch point between the 17-deoxy (mineralo) and the 17-hydroxy (gluco) corticosteroid pathways in the adrenal cortex; (ii) the corresponding specific cytochrome (P-450(17 alpha] is highly dependent upon hormonal regulation; and (iii) the enzyme also catalyzes the steroid 17-20 lyase reaction, leading to the major androgens in the testis. As a prerequisite to the study of its regulation in intact cell, 17 alpha-hydroxylase was purified from calf testis microsomal preparations. Following five chromatographic steps, the enzyme was obtained as an apparently homogeneous protein of Mr = 57 kDa upon gel electrophoresis. The procedure yielded a recovery of about 10% as judged by cytochrome P-450 assay. Whereas 17 alpha-hydroxylase specific activity was about 30-fold enriched during the purification, that of the C17-20 lyase was increased by about 6-fold, strongly suggesting that its organelle environment may modulate the enzymatic activity. The purified enzyme yielded a 20 N-terminal amino-acid sequence showing a complete homology with that of its adrenal counterpart and a polyclonal antibody raised against our preparation revealed a 57 kDa protein band in bovine adrenocortical microsomal extracts, upon immunoblotting experiments. It was thus concluded that bovine 17 alpha-hydroxylase activity is supported by highly similar if not identical enzymatic proteins in both testis and adrenal cortex tissues. The purified P-450(17 alpha) preparation is now being used in reconstitution experiments which suggest that microsomal components may contribute to a different expression of the enzyme specificity in its native testis or adrenocortical intracellular environment, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号