首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conserved motif C, identified within members of the major facilitator superfamily (MFS) of transport proteins that mediate drug export, was examined in the tetracycline resistance efflux protein TetA(K) from Staphylococcus aureus; motif C is contained within transmembrane segment 5. Using site-directed mutagenesis, the importance of the conserved glycine (G151, G155, G159, and G160) and proline (P156) residues within this motif was investigated. Over 40 individual amino acid replacements were introduced; however, only alanine and serine substitutions for glycine at G151, G155, and G160 were found to retain significant levels of tetracycline resistance and transport activity in cells expressing mutant proteins. Notably, P156 and G159 appear to be crucial, as amino acid replacements at these positions either significantly reduced or abolished tetracycline/H(+) activity. The highly conserved nature of motif C and its distribution throughout drug exporters imply that the residues of motif C play a similar role in all MFS proteins that function as antiporters.  相似文献   

2.
Bacterial Tn10-encoded metal-tetracycline/H(+) antiporter was the first found drug exporter and has been studied as a paradigm of antiporter-type major facilitator superfamily transporters. Here the 400 amino acid residues of this protein were individually replaced by cysteine except for the initial methionine. As a result, we could obtain a complete map of the functionally or structurally important residues. In addition, we could determine the precise boundaries of all the transmembrane segments on the basis of the reactivity with N-ethylmaleimide (NEM). The NEM binding results indicated the presence of a transmembrane water-filled channel in the transporter. The twelve transmembrane segments can be divided into three groups; four are totally embedded in the hydrophobic interior, four face a putative water-filled channel along their full length, and the remaining four face the channel for half their length, the other halves being embedded in the hydrophobic interior. These three types of transmembrane segments are mutually arranged with a 4-fold symmetry. The competitive binding of membrane-permeable and -impermeable SH reagents in intact cells indicates that the transmembrane water-filled channel has a thin barrier against hydrophilic molecules in the middle of the transmembrane region. Inhibition and stimulation of NEM binding in the presence of tetracycline reflects the substrate-induced protection or conformational change of the Tn10-encoded metal-tetracycline/H(+) antiporter. The mutations protected from NEM binding by tetracycline were mainly located around the permeability barrier in the N-terminal half, suggesting the location of the substrate binding site.  相似文献   

3.
T Kawabe  A Yamaguchi 《FEBS letters》1999,457(1):169-173
Gly-332 is a conformationally important residue of the Tn10-encoded metal-tetracycline/H+ antiporter (TetA(B)), which was found by random mutagenesis and confirmed by site-directed mutagenesis. A bulky side chain at position 332 is deleterious to the transport function. A spontaneous second-site suppressor revertant was isolated from G332S mutant and identified as the Ala-354-->Asp mutant. Gly-332 and Ala-354 are located on opposite ends of transmembrane segment XI. As judged from [14C]NEM binding to Cys mutants, the residue at position 354, which is originally exposed to water, was buried in the membrane by a G332S mutation through a remote conformational change of transmembrane segment XI. This effect is the same as that of a G62L mutation at position 30 through transmembrane segment II [Kimura, T., Sawai, T. and Yamaguchi, A. (1997) Biochemistry 36, 6941-6946]. Interestingly, the G332S mutation was also suppressed by the L30S mutation, and the G62L mutation was moderately suppressed by the A354D mutation. These results indicate the presence of a close conformational relationship between the flanking regions of the transmembrane segments II and XI.  相似文献   

4.
A K+/H+ antiport system was detected for the first time in right-side-out membrane vesicles prepared from alkaliphilic Bacillus sp. no. 66 (JCM 9763). An outwardly directed K+ gradient (intravesicular K+ concentration, Kin, 100 mM; extravesicular K+ concentration, Kout, 0.25 mM) stimulated uphill H+ influx into right-side-out vesicles and created the inside-acidic pH gradient (ΔpH). This H+ influx was pH-dependent and increased as the pH increased from 6.8 to 8.4. Addition of 100 μM quinine inhibited the H+ influx by 75%. This exchange process was electroneutral, and the H+ influx was not stimulated by the imposition of the membrane potential (interior negative). Addition of K+ at the point of maximum ΔpH caused a rapid K+-dependent H+ eflux consistent with the inward exchange of external K+ for internal H+ by a K+/H+ antiporter. Rb+ and Cs+ could replace K+ but Na+ and Li+ could not. The H+ efflux rate was a hyperbolic function of K+ and increased with increasing extravesicular pH (pHout) from 7.5 to 8.5. These findings were consistent with the presence of K+/H+ antiport activity in these membrane vesicles. Received: March 20, 1997 / Accepted: May 22, 1997  相似文献   

5.
Each amino acid in putative transmembrane helix VI and its flanking regions, from Ser-156 to Thr-185, of a Cys-free mutant of the Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) was individually replaced by Cys. All of the cysteine-scanning mutants showed a normal level of tetracycline resistance except for the S156C mutant, which showed moderate resistance, indicating that there is no essential residue located in this region. All 20 mutants from S159C to W178C showed no reactivity with N-ethylmaleimide (NEM), whereas the mutants of the flanking regions from S156C to H158C and F179C to T185C were highly or moderately reactive with NEM. These results indicate that like transmembrane helices III and IX, the transmembrane helix VI comprising residues Ser-159-Trp-178 is totally embedded in the hydrophobic environment.  相似文献   

6.
We cloned the aspT gene encoding the L-aspartate:L-alanine antiporter AspTCt in Comamonas testosteroni genomic DNA. Analysis of the nucleotide sequence revealed that C. testosteroni has an asp operon containing aspT upstream of the l-aspartate 4-decarboxylase gene, and that the gene order of the asp operon of C. testosteroni is the inverse of that of Tetragenococcus halophilus. We used proteoliposomes to confirm the transport processes of AspTCt. To elucidate the two-dimensional structure of AspTCt, we analysed its membrane topology by means of alkaline phosphatase (PhoA) and beta-lactamase (BlaM) fusion methods. The fusion analyses revealed that AspTCt has seven transmembrane segments (TMs), a large cytoplasmic loop containing approximately 200 amino acid residues between TM4 and TM5, a cytoplasmic N-terminus, and a periplasmic C-terminus. These results suggest that the orientation of the N-terminus of AspTCt differs from that of tetragenococcal AspT, even though these two AspT orthologues catalyse the same transport reactions.  相似文献   

7.
We reported that the positive charge of Arg(70) is mandatory for tetracycline transport activity of Tn10-encoded metal-tetracycline/H(+) antiporter (TetA(B)) (Someya, Y., and Yamaguchi, A. (1996) Biochemistry 35, 9385-9391). Arg(70) may function through a charge-pairing with a negatively charged residue in close proximity. Therefore, we mutated Asp(66) and Asp(120), which are only two negatively charged residues located close to Arg(70) in putative secondary structure of TetA(B) and highly conserved throughout transporters of the major facilitator superfamily. Site-directed mutagenesis studies revealed that Asp(66) is essential, but Asp(120) is important for TetA(B) function. Surprisingly, when Asp(120) was replaced by a neutral residue, the R70A mutant recovered tetracycline resistance and transport activity. There was no such effect in the Asp(66) mutation. The charge-exchanged mutant, R70D/D120R, also showed significant drug resistance and transport activity (about 50% of the wild type), although the R70D mutant had absolutely no activity, and the D120R mutant retained very low activity (about 10% of the wild type). Both the R70C and D120C mutants were inactivated by N-ethylmaleimide. Mercuric ion (Hg(2+)), which gives a positive charge to a SH group of a Cys residue through mercaptide formation, had an opposite effect on the R70C and D120C mutants. The activity of the R70C mutant was stimulated by Hg(2+); however, on the contrary, the D120C mutant was partially inhibited. On the other hand, the R70C/D120C double mutant was almost completely inactivated by Hg(2+), probably because the side chains at positions 70 and 120 are bridged with Hg(2+). The close proximity of positions 70 and 120 were confirmed by disulfide cross-linking formation of the R70C/D120C double mutant when it was oxidized by copper-(1,10-phenanthroline). These results indicate that the positive charge of Arg(70) requires the negative charge of Asp(120) for neutralization, probably for properly positioning transmembrane segments in the membrane.  相似文献   

8.
The interaction of VacA with membranes involves: (i) a low pH activation that induces VacA monomerization in solution, (ii) binding of the monomers to the membrane, (iii) oligomerization and (iv) channel formation. To better understand the structure-activity relationship of VacA, we determined its topology in a lipid membrane by a combination of proteolytic, structural and fluorescence techniques. Residues 40-66, 111-169, 205-266, 548-574 and 723-767 were protected from proteolysis because of their interaction with the membrane. This last peptide was shown to most probably adopt a surface orientation. Both alpha-helices and beta-sheets were found in the structure of the protected peptides.  相似文献   

9.
The properties of TetA(L)-dependent tetracycline/proton and Na+/proton antiport were studied in energized everted vesicles of Escherichia coli transformed with a cloned tetA(L) gene (pJTA1) from Bacillus subtilis. Inhibition patterns by valinomycin and nigericin indicated that both antiports were electrogenic, in contrast to the tetracycline/proton antiport encoded by gram-negative plasmid tet genes. Tetracycline uptake in the everted system was dependent upon a divalent cation, with cobalt being the preferred one. The apparent Km for tetracycline was markedly increased at pH 8.5 versus pH 7.5, whereas the Vmax was unchanged. The much higher apparent Km for Na+ decreased at pH 8.5 relative to that at pH 7.5, as did the Vmax. Na+ did not affect tetracycline uptake, nor did Co2+ and/or tetracycline affect Na+ uptake; complex patterns of inhibition by amiloride and analogs thereof were observed.  相似文献   

10.
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact.  相似文献   

11.
AspT is an electrogenic aspartate:alanine exchange protein that represents the vectorial component of a proton-motive metabolic cycle found in some strains of Tetragenococcus halophilus. AspT is the sole member of a new family, the Aspartate: Alanine Exchanger (AAE) family, in secondary transporters, according to the computational classification proposed by Saier et al. (http://www.biology.ucsd.edu/~msaier/transport/). We analyzed the topology of AspT biochemically, by using fusion methods in combination with alkaline phosphatase or beta-lactamase. These results suggested that AspT has a unique topology; 8 TMS, a large cytoplasmic loop (183 amino acids) between TMS5 and TMS6, and N- and C-termini that both face the periplasm. These results demonstrated a unique 2D-structure of AspT as the novel AAE family.  相似文献   

12.
13.
We describe purification of three different states of the 82-kDa K+/H+ antiporter from rat liver mitochondria. The denatured 82-kDa protein, identified by its selective labeling with [14C]dicyclohexylcarbodiimide (DCCD), was purified by preparative two-dimensional gel electrophoresis. This purified product was used to raise and immunopurify monospecific polyclonal antibodies. Western blot analysis showed that the [14C] DCCD-labeled 82-kDa protein is not a DCCD-crosslinked product. The native, [14C]DCCD-labeled, 82-kDa protein was purified by (NH4)2SO4 fractionation and column chromatography, using 14C labeling and gel electrophoresis to track the protein. The native, non-DCCD-labeled 82-kDa protein was purified by similar procedures, using immunopurified antibodies to track the protein. DCCD binding had no effect on chromatographic behavior of the antiporter protein. This protocol resulted in purification of the 82-kDa protein to apparent homogeneity. The purified, native 82-kDa protein was reconstituted into proteoliposomes and assayed for K+ transport with the new fluorescent probe, PBFI. K+ transport was electroneutral and was inhibited by DCCD, Mg2+, and timolol. The turnover number for K+ transport was about 1000 s-1, very similar to the value previously estimated in intact mitochondria.  相似文献   

14.
The tet(K) gene, encoding the tetracycline efflux protein from Staphylococcus aureus, mediates the transport of potassium in an Escherichia coli mutant defective in potassium uptake. Deletion mapping indicates that the first third of the tet(K) gene is sufficient to mediate potassium transport.  相似文献   

15.
Leakage of K+ ions from Staphylococcus aureus in response to tea tree oil   总被引:1,自引:0,他引:1  
The leakage of K(+) ions from Staphylococcus aureus in response to tea tree oil (TTO) was investigated with an ion-selective electrode. The amount of leaked K(+) ions and the rate of leakage of K(+) ions induced by TTO were dependent on the concentration of TTO. Measurements of initial rates required less time than measurements of total amounts and provided an index of the interaction between TTO and the cell membrane. Thus, the initial rate of leakage might be a more useful measure of the antibacterial activity of TTO than the total amount.  相似文献   

16.
A Yamaguchi  M Nakatani  T Sawai 《Biochemistry》1992,31(35):8344-8348
Of the 16 acidic amino acid residues located in the hydrophilic region of the metal-tetracycline/H+ antiporter of transposon Tn10, five glutamic acids and three aspartic acids are conserved among the tetracycline/H+ antiporters of Gram-negative bacteria. When these conserved acidic residues were each replaced by a neutral polar residue, glutamine or asparagine, only the Asp66 substitution mutants completely lost their transport activity. The substitution of Glu274, Asp120, Glu181, or Asp38 caused significant reduction of the transport activity, whereas the substitution of the other three residues had no detectable effect on the activity. These findings led to the conclusion that only Asp66 is essential for the transport function.  相似文献   

17.
18.
Role of the Plasma Membrane H+-ATPase in K+ Transport   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of the plant plasma membrane H+-ATPase in K+ uptake was examined using red beet (Beta vulgaris L.) plasma membrane vesicles and a partially purified preparation of the red beet plasma membrane H+-ATPase reconstituted in proteoliposomes and planar bilayers. For plasma membrane vesicles, ATP-dependent K+ efflux was only partially inhibited by 100 [mu]M vanadate or 10 [mu]M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. However, full inhibition of ATP-dependent K+ efflux by these reagents occurred when the red beet plasma membrane H+-ATPase was partially purified and reconstituted in proteoliposomes. When reconstituted in a planar bilayer membrane, the current/voltage relationship for the plasma membrane H+-ATPase showed little effect of K+ gradients imposed across the bilayer membrane. When taken together, the results of this study demonstrate that the plant plasma membrane H+-ATPase does not mediate direct K+ transport chemically linked to ATP hydrolysis. Rather, this enzyme provides a driving force for cellular K+ uptake by secondary mechanisms, such as K+ channels or H+/K+ symporters. Although the presence of a small, protonophore-insensitive component of ATP-dependent K+ transport in a plasma membrane fraction might be mediated by an ATP-activated K+ channel, the possibility of direct K+ transport by other ATPases (i.e. K+-ATPases) associated with either the plasma membrane or other cellular membranes cannot be ruled out.  相似文献   

19.
New indicators for fluorescent measurement of Na+ and K+ ions should prove particularly useful for studies of reconstituted carriers of these ions. We show that PBFI, a K(+)-specific probe, provides a convenient and sensitive assay for the study of K+ uptake mediated by the reconstituted mitochondrial K+/H+ (Na+/H+) antiporter. Fluorescent measurements have enabled us for the first time to establish reconstitution of the K+/H+ (Na+/H+) antiporter from beef heart as well as from rat liver mitochondria. This technique has also enabled us to establish that dicyclohexylcarbodiimide is capable of complete inhibition of K+/H+ antiport in the reconstituted system, in accord with findings in intact mitochondria. PBFI fluorescence, which measures net K+ uptake, was essential for this corroboration, since dicyclohexylcarbodiimide is not capable of complete inhibition of 42K+/K+ or 86Rb+/Rb+ exchange, presumably because it acts selectively on proton transport within the carrier.  相似文献   

20.
The K+/H+ antiporter nigericin inhibits the intercellular exchange of the fluorescent dye Lucifer Yellow between DM15-transformed fibroblasts derived from the Djungarian hamster. The efficacy of nigericin action was related to its concentration and time of incubation. The nigericin-induced uncoupling effect on gap junctions was reversible and was shown to be based on its ability to cause cystolic acidification. The effect of nigericin on dye-coupling in intact and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) pretreated cells did not differ, indicating that the uncoupling effect of H+ on gap junctions in DM15 cells was not mediated by the TPA-dependent isoform of protein kinase C.Abbreviations: BCECF, 2,7-bis-(2-carboxyethyl)-5(6)carboxyfluoresceine - BS, bovine serum - LY, Lucifer Yellow - pHi, intercellular pH - PKC, protein kinase C - TPA, 12-0-tetradecanoylphorbol-13-acetate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号