首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Treatment of tumor-bearing mice with a stimulatory Ab to glucocorticoid-induced TNFR family-related receptor (GITR) has previously been shown to elicit protective T cell responses against poorly immunogenic tumors. However, the role of GITR stimulation on CD8 T cells and the nature of tumor rejection Ags have yet to be determined. In this study, we show that a stimulatory mAb to GITR (clone DTA-1) acts directly on CD8 T cells, but not on CD4(+)CD25(+) regulatory T (T(reg)) cells, in B16 tumor-bearing mice to induce concomitant immunity against secondary B16 tumors, as well as protective memory following surgical excision of the primary tumor. Melanoma growth itself induced GITR expression on tumor-specific CD8 T cells, providing a mechanism whereby these cells may respond to stimulatory anti-GITR. Unexpectedly, in contrast to T(reg) cell depletion therapy with anti-CD4, GITR stimulation induced very weak CD8 T cell responses to melanocyte differentiation Ags expressed by the tumor, and did not induce autoimmune vitiligo. Accordingly, GITR-stimulated hosts that were primed with B16 melanoma rejected B16, but not the unrelated JBRH melanoma, indicating that tumor rejection Ags are tumor-specific rather than shared. In support of this, we show that GITR stimulation induces CD8 T cell responses to a tumor-specific Ag, and that these responses are of higher functional avidity compared with those induced by T(reg) cell depletion. We conclude that stimulation of GITR on effector CD8 T cells results in high-avidity T cell responses to tumor-specific Ags, thereby inducing potent antitumor immunity in the absence of autoimmunity.  相似文献   

2.
Glucocorticoid-induced TNF receptor family related protein (GITR) is present on many different cell types. Previous studies have shown that in vivo administration of an anti-GITR agonist mAb (DTA-1) inhibits regulatory T cells (Treg)-dependent suppression and enhances T cell responses. In this study, we show that administration of DTA-1 induces >85% tumor rejection in mice challenged with B16 melanoma. Rejection requires CD4+, CD8+, and NK1.1+ cells and is dependent on IFN-gamma and Fas ligand and independent of perforin. Depletion of Treg via anti-CD25 treatment does not induce B16 rejection, whereas 100% of the mice depleted of CD25+ cells and treated with DTA-1 reject tumors, indicating a predominant role of GITR on effector T cell costimulation rather than on Treg modulation. T cells isolated from DTA-1-treated mice challenged with B16 are specific against B16 and several melanoma differentiation Ags. These mice develop memory against B16, and a small proportion of them develop mild hypopigmentation. Consistent with previous studies showing that GITR stimulation increases Treg proliferation in vitro, we found in our model that GITR stimulation expanded the absolute number of FoxP3+ cells in vivo. Thus, we conclude that overall, GITR stimulation overcomes self-tolerance/ignorance and enhances T cell-mediated antitumor activity with minimal autoimmunity.  相似文献   

3.
4.
5.
In vitro, engagement of GITR on Treg cells by the agonistic anti-GITR mAb, DTA-1, appears to abrogate their suppressive function. The consequence of in vivo engagement of GITR by DTA-1 is, however, less clear. In this study, we show that Treg cells isolated from DTA-1-treated mice were as potent as those from untreated mice in suppressing conventional CD4 T cells in vitro, indicating that in vivo GITR ligation does not disable Treg cells. Treatment of Foxp3/GFP knock-in mice with DTA-1 led to a selective reduction of circulating Treg cells, suggesting that DTA-1 is a depleting mAb which preferentially targets Treg cells. In tumour-bearing mice, DTA-1-mediated depletion of Treg cells was most marked in tumours but not in tumour-draining lymph node. These features were confirmed in an adoptive transfer model using tumour antigen-specific Treg cells. Interestingly, Treg cells detected in tumour tissues expressed much higher levels of GITR than those in tumour-draining lymph nodes, indicating that the efficiency of depletion might be correlated with the level of GITR expression. Finally, in vivo labelling of GITR in naive or tumour-bearing mice demonstrated that Treg cells constitutively expressed higher levels of GITR than conventional T cells, independent of location and activation state, consistent with the preferential in vivo depletion of Tregs by DTA-1. Thus, depletion of Treg cells represents a previously unrecognised in vivo activity of DTA-1 which has important implications for the application of anti-GITR antibodies in cancer immunotherapy.  相似文献   

6.
The requirement for CD4(+) Th cells in the cross-priming of antitumor CTL is well accepted in tumor immunology. Here we report that the requirement for T cell help can be replaced by local production of GM-CSF at the vaccine site. Experiments using mice in which CD4(+) T cells were eliminated, either by Ab depletion or by gene knockout of the MHC class II beta-chain (MHC II KO), revealed that priming of therapeutic CD8(+) effector T cells following vaccination with a GM-CSF-transduced B16BL6-D5 tumor cell line occurred independently of CD4(+) T cell help. The adoptive transfer of CD8(+) effector T cells, but not CD4(+) effector T cells, led to complete regression of pulmonary metastases. Regression of pulmonary metastases did not require either host T cells or NK cells. Transfer of CD8(+) effector T cells alone could cure wild-type animals of systemic tumor; the majority of tumor-bearing mice survived long term after treatment (>100 days). In contrast, adoptive transfer of CD8(+) T cells to tumor-bearing MHC II KO mice improved survival, but eventually all MHC II KO mice succumbed to metastatic disease. WT mice cured by adoptive transfer of CD8(+) T cells were resistant to tumor challenge. Resistance was mediated by CD8(+) T cells in mice at 50 days, while both CD4(+) and CD8(+) T cells were important for protection in mice challenged 150 days following adoptive transfer. Thus, in this tumor model CD4(+) Th cells are not required for the priming phase of CD8(+) effector T cells; however, they are critical for both the complete elimination of tumor and the maintenance of a long term protective antitumor memory response in vivo.  相似文献   

7.
8.
The glucocorticoid-induced TNFR (GITR) is expressed at high levels on resting CD4(+)CD25(+) T regulatory (T(R)) cells and regulates their suppressive phenotype. Accordingly, we show that anti-GITR mAb treatment of SJL mice with proteolipid protein 139-151-induced experimental autoimmune encephalomyelitis significantly exacerbated clinical disease severity and CNS inflammation, and induced elevated levels of Ag-specific T cell proliferation and cytokine production. Interestingly, prior depletion of T(R) cells failed to result in exacerbated experimental autoimmune encephalomyelitis suggesting alternative targets for the anti-GITR mAb treatment. Importantly, naive CD4(+)CD25(-) T cells up-regulated GITR expression in an activation-dependent manner and anti-GITR mAb treatment enhanced the level of CD4(+) T cell activation, proliferation, and cytokine production in the absence of T(R) cells both in vivo and in vitro. Taken together, these findings suggest a dual functional role for GITR as GITR cross-linking both inactivates T(R) cells and increases CD4(+)CD25(-) T cell effector function, thus enhancing T cell immunity.  相似文献   

9.
In this study, we investigated the effect of an agonistic mAb (DTA-1) against glucocorticoid-induced TNF receptor (GITR) in a murine model of systemic lupus erythematosus-like chronic graft-vs-host disease (cGVHD). A single dose of DTA-1 inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis, typical symptoms of cGVHD. DTA-1-treated mice showed clinical and pathological signs of acute GVHD (aGVHD), such as lymphopenia, loss of body weight, increase of donor cell engraftment, and intestinal damage, indicating that DTA-1 shifted cGVHD toward aGVHD. The conversion of cGVHD to aGVHD occurred because DTA-1 prevented donor CD8+ T cell anergy. Functionally active donor CD8+ T cells produced high levels of IFN-gamma and had an elevated CTL activity against host Ags. In in vitro MLR, anergic responder CD8+ T cells were generated, and DTA-1 stimulated the activation of these anergic CD8+ T cells. We further confirmed in vivo that donor CD8+ T cells, but not donor CD4+ T cells, were responsible for the DTA-1-mediated conversion of cGVHD to aGVHD. These results indicate that donor CD8+ T cell anergy is a restriction factor in the development of aGVHD and that in vivo ligation of GITR prevents CD8+ T cell anergy by activating donor CD8+ T cells that otherwise become anergic. In sum, our data suggest GITR as an important costimulatory molecule regulating cGVHD vs aGVHD and as a target for therapeutic intervention in a variety of related diseases.  相似文献   

10.
CD4(+)CD25(+) regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance and prevention of autoimmune disease. However, accumulating evidence suggests that a fraction of the peripheral CD4(+)CD25(-) T cell population also possesses regulatory activity in vivo. Recently, it has been shown glucocorticoid-induced TNFR family-related gene (GITR) is predominantly expressed on CD4(+)CD25(+) regulatory T cells. In this study, we show evidence that CD4(+)GITR(+) T cells, regardless of the CD25 expression, regulate the mucosal immune responses and intestinal inflammation. SCID mice restored with the CD4(+)GITR(-) T cell population developed wasting disease and severe chronic colitis. Cotransfer of CD4(+)GITR(+) population prevented the development of CD4(+)CD45RB(high) T cell-transferred colitis. Administration of anti-GITR mAb-induced chronic colitis in mice restored both CD45RB(high) and CD45RB(low) CD4(+) T cells. Interestingly, both CD4(+)CD25(+) and CD4(+)CD25(-) GITR(+) T cells prevented wasting disease and colitis. Furthermore, in vitro studies revealed that CD4(+)CD25(-)GITR(+) T cells as well as CD4(+)CD25(+)GITR(+) T cells expressed CTLA-4 intracellularly, showed anergic, suppressed T cell proliferation, and produced IL-10 and TGF-beta. These data suggest that GITR can be used as a specific marker for regulatory T cells controlling mucosal inflammation and also as a target for treatment of inflammatory bowel disease.  相似文献   

11.
Accumulating evidences support that CD4(+)CD25(high) T regulatory (Treg) cells play an essential role in controlling and preventing autoimmunity. Paradoxically, RA patients have elevated numbers of circulating CD4(+)CD25(high) T cells, however, the inflammation is still ongoing. Further identification of these CD4(+)CD25(high) T cells may contribute to a better understanding of underlying mechanisms. We show here that these CD4(+)CD25(high) T cells were composed of CD4(+)CD25(high)FoxP3(+) Treg cells and activated CD4(+)CD25(high)FoxP3(-) effector cells. Moreover, there were significantly more Treg cells and effector T cells expressing GITR, and more monocytes expressing GITR-L. Thus, although RA patients have elevated numbers of CD4(+)CD25(high) T cells, the suppressive function is not increased, because of the increased number of activated effector T cells. In addition, the GITR-GITR-L system was activated in RA patients, which might lead to diminish suppressive activity of Treg cells and/or lead to resistance of activated effector T cells to suppression by Treg cells, thus, contributing to the ongoing inflammation in RA patients.  相似文献   

12.
The regulation of T cell expansion by TNFR family members plays an important role in determining the magnitude of the immune response to pathogens. As several members of the TNFR family, including glucocorticoid-induced TNFR-related protein (GITR), are found on both regulatory and effector T cells, there is much interest in understanding how their effects on these opposing arms of the immune system affect disease outcome. Whereas much work has focused on the role of GITR on regulatory T cells, little is known about its intrinsic role on effector T cells in an infectious disease context. In this study, we demonstrate that GITR signaling on CD8 T cells leads to TNFR-associated factor (TRAF) 2/5-dependent, TRAF1-independent NF-κB induction, resulting in increased Bcl-x(L). In vivo, GITR on CD8 T cells has a profound effect on CD8 T cell expansion, via effects on T cell survival. Moreover, GITR is required on CD8 T cells for enhancement of influenza-specific CD8 T cell expansion upon administration of agonistic anti-GITR Ab, DTA-1. Remarkably, CD8 T cell-intrinsic GITR is essential for mouse survival during severe, but dispensable during mild respiratory influenza infection. These studies highlight the importance of GITR as a CD8 T cell costimulator during acute viral infection, and argue that despite the similarity among several TNFR family members in inducing T lymphocyte survival, they clearly have nonredundant functions in protection from severe infection.  相似文献   

13.
Although it has been shown that CD4(+)CD25(+) regulatory T cells (T(reg)) contribute to long-term graft acceptance, their impact on the effector compartment and the mechanism by which they exert suppression in vivo remain unresolved. Using a CD4(+) TCR transgenic model for graft tolerance, we have unveiled the independent contributions of anergy and active suppression to the fate of immune and tolerant alloreactive T cells in vivo. First, it is shown that anti-CD154-induced tolerance resulted in the abortive expansion of the alloreactive, effector T cell pool. Second, commensurate with reduced expansion, there was a loss of cytokine production, activation marker expression, and absence of memory T cell markers. All these parameters defined the tolerant alloreactive T cells and correlated with the inability to mediate graft rejection. Third, the tolerant alloreactive T cell phenotype that is induced by CD154 was reversed by the in vivo depletion of T(reg). Reversal of the tolerant phenotype was followed by rapid rejection of the allograft. Fourth, in addition to T(reg) depletion, costimulation of the tolerant alloreactive T cells or activation of the APC compartment also reverted alloreactive T cell tolerance and restored an activated phenotype. Finally, it is shown that the suppression is long-lived, and in the absence of anti-CD154 and donor-specific transfusion, these T(reg) can chronically suppress effector cell responses, allowing long-lived graft acceptance.  相似文献   

14.
16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2) lipopeptides act as toll-like receptor (TLR)2/6 ligands and activate natural killer (NK) cells and dendritic cells (DCs) to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3(+)CD4(+) regulatory T (T reg) cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine.  相似文献   

15.
16.
Previously, we reported that the major stress-inducible heat shock protein 70 (Hsp70) acts as a recognition structure for natural killer (NK) cells, if localized on the cell surface of tumor cells. Incubation of purified NK cells with low-dose interleukin (IL)-2 (100 IU/mL) plus recombinant Hsp70-protein or the immunogenic 14-mer Hsp70-peptide TKDNNLLGRFELSG450-463, termed TKD (2 microg/mL), enhances the cytolytic activity against Hsp70 membrane-positive (CX+) but not against Hsp70-negative (CX-) tumor cells. Here, we show that the cytolytic activity against Hsp70-positive tumor cells is inducible by incubation of unseparated peripheral blood mononuclear cells (PBMNC) with low-dose IL-2 plus TKD. Cell sorting experiments revealed that within the PBMNC population CD94(+)/CD3(-) NK cells, and not CD94(-)/CD3(+) T cells, mediate the cytotoxic activity against Hsp70-positive tumor cells. The antitumoral effect of PBMNC stimulated either with IL-2 plus TKD or with IL-2 alone was assessed in tumor-bearing severe combined immunodeficiency/beige mice. A single intravenous (iv) injection of 40 x 10(6) IL-2 plus TKD-stimulated PBMNC (containing 5.2 x 10(6) NK cells) on day 4 results in a 60% reduction in tumor size, from 3.89 g to 1.56 g. In contrast, the adoptive transfer of the identical amount PBMNC stimulated with low-dose IL-2 only (containing 4.4 x 10(8) NK cells) reduces the tumor size only less than 10% (3.64 g). A phenotypic characterization of the excised tumors revealed that predominantly Hsp70-positive tumor cells were eliminated by TKD-activated PBMNC. Kinetic studies demonstrate that the in vivo cytolytic capacity of TKD-stimulated PBMNC is dependent on the effector to target cell ratio. An iv injection of effector cells on day 1 or 2 after tumor cell inoculation results in significantly smaller tumors (0.77 g or 0.89 g) on day 21 as compared with mice that were immunoreconstituted on day 4 or 8 (1.39 g or 2.23 g). The tumor size of nonimmunoreconstituted control animals was 3.55 g.  相似文献   

17.
T cell immune responses are regulated by the interplay between effector and suppressor T cells. Immunization with Ag leads to the selective expansion and survival of effector CD4(+) T cells with high affinity TCR against the Ag and MHC. However, it is not known if CD4(+)CD25(+) regulatory T cells (T(reg)) recognize the same Ag as effector T cells or whether Ag-specific TCR repertoire modification occurs in T(reg). In this study, we demonstrate that after a primary Ag challenge, T(reg) proliferate and TCR repertoire modification is observed although both of these responses were lower than those in conventional T cells. The repertoire modification of Ag-specific T(reg) after primary Ag challenge augmented the total suppressive function of T(reg) against TCR repertoire modification but not against the proliferation of memory CD4(+) T cells. These results reveal that T cell repertoire modification against a non-self Ag occurs in T(reg), which would be crucial for limiting excess primary and memory CD4(+) T cell responses. In addition, these studies provide evidence that manipulation of Ag-specific T(reg) is an ideal strategy for the clinical use of T(reg).  相似文献   

18.
Glucocorticoid-induced TNF receptor (GITR) is known to provide costimulatory signals to CD4+CD25- and CD4+CD25+ T cells during immune responses in vivo. However, the functional roles of GITR expressed on NKT cells have not been well characterized. In this study, we have explored the functions of GITR as a costimulatory factor on NKT cells. GITR was found to be constitutively expressed on NKT cells and its expression was enhanced by TCR signals. GITR engagement using DTA-1, an agonistic mAb against GITR, in the presence of TCR signals, augmented IL-2 production, the expression of activation markers, cell cycle progression, and the nuclear translocations of NF-kappaB p50 and p65. Furthermore, GITR engagement enhanced the production of IL-4, IL-10, IL-13, and IFN-gamma by NKT cells and the expression level of phosphorylated p65 in NKT cells in the presence of TCR engagement, indicating that GITR provides costimulatory signals to NKT cells. The costimulatory effects of GITR on NKT cells were comparable to those of CD28 in terms of cytokine production. Moreover, the coinjection of DTA-1 and alpha-galactosylceramide into B6 mice induced more IL-4 and IFN-gamma production than the coinjection of control mAbs and alpha-galactosylceramide. In addition, the adoptive transfer of DTA-1-pretreated NKT cells into CD1d(-/-) mice attenuated hypersensitivity pneumonitis more than control IgG pretreated NKT cells in these mice. These findings demonstrate that GITR engagement on NKT cells modulates immune responses in hypersensitivity pneumonitis in vivo. Taken together, our findings suggest that GITR engagement costimulates NKT cells and contributes to the regulation of immune-associated disease processes in vivo.  相似文献   

19.
Suppression of tumor-specific T cell sensitization is a predominant mechanism of tumor escape. To identify tumor-induced suppressor cells, we transferred spleen cells from mice bearing progressive MCA205 sarcoma into sublethally irradiated mice. These mice were then inoculated subdermally with tumor cells to stimulate T cell response in the tumor-draining lymph-node (TDLN). Tumor progression induced splenomegaly with a dramatic increase (22.1%) in CD11b(+)Gr-1(+) myeloid-derived suppressor cells (MDSC) compared with 2.6% of that in normal mice. Analyses of therapeutic effects by the adoptive immunotherapy revealed that the transfer of spleen cells from tumor-bearing mice severely inhibited the generation of tumor-immune T cells in the TDLN. We further identified MDSC to be the dominant suppressor cells. However, cells of identical phenotype from normal spleens lacked the suppressive effects. The suppression was independent of CD4(+)CD25(+) regulatory T cells. Intracellular IFN-gamma staining revealed that the transfer of MDSC resulted in a decrease in numbers of tumor-specific CD4(+) and CD8(+) T cells. Transfer of MDSC from MCA207 tumor-bearing mice also suppressed the MCA205 immune response indicating a lack of immunologic specificity. Further analyses demonstrated that MDSC inhibited T cell activation that was triggered either by anti-CD3 mAb or by tumor cells. However, MDSC did not suppress the function of immune T cells in vivo at the effector phase. Our data provide the first evidence that the systemic transfer of MDSC inhibited and interfered with the sensitization of tumor-specific T cell responses in the TDLN.  相似文献   

20.
CD4(+) T cells control the effector function, memory, and maintenance of CD8(+) T cells. Paradoxically, we found that absence of CD4(+) T cells enhanced adoptive immunotherapy of cancer when using CD8(+) T cells directed against a persisting tumor/self-Ag. However, adoptive transfer of CD4(+)CD25(-) Th cells (Th cells) with tumor/self-reactive CD8(+) T cells and vaccination into CD4(+) T cell-deficient hosts induced autoimmunity and regression of established melanoma. Transfer of CD4(+) T cells that contained a mixture of Th and CD4(+)CD25(+) T regulatory cells (T(reg) cells) or T(reg) cells alone prevented effective adoptive immunotherapy. Maintenance of CD8(+) T cell numbers and function was dependent on Th cells that were capable of IL-2 production because therapy failed when Th cells were derived from IL-2(-/-) mice. These findings reveal that Th cells can help break tolerance to a persisting self-Ag and treat established tumors through an IL-2-dependent mechanism, but requires simultaneous absence of naturally occurring T(reg) cells to be effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号