首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Peroxynitrite (ONOO(-)), a reactive nitrogen species, is capable of nitrating tyrosine residue of proteins. Here we show in vitro evidence that plant phenolic compounds can also be nitrated by an ONOO(-)-independent mechanism. In the presence of NaNO(2), H(2)O(2), and horseradish peroxidase (HRP), monophenolic p-coumaric acid (p-CA, 4-hydroxycinnamic acid) was nitrated to form 4-hydroxy-3-nitrocinnamic acid. The reaction was completely inhibited by KCN, an inhibitor for HRP. The antioxidant ascorbate suppressed p-CA nitration and its suppression time depended strongly on ascorbate concentration. We conclude that nitrogen dioxide radical (NO(2)(radical)), but not ONOO(-), produced by a guaiacol peroxidase is the intermediate for phytophenolic nitration.  相似文献   

2.

Background

The functions of free radicals on the effects of insulin that result in protection against cerebral ischemic insult in diabetes remain undefined. This present study aims to explain the contradiction among nitric oxide (NO)/superoxide/peroxynitrite of insulin in amelioration of focal cerebral ischemia–reperfusion (FC I/R) injury in streptozotocin (STZ)-diabetic rats and to delineate the underlying mechanisms. Long-Evans male rats were divided into three groups (age-matched controls, diabetic, and diabetic treated with insulin) with or without being subjected to FC I/R injury.

Results

Hyperglycemia exacerbated microvascular functions, increased cerebral NO production, and aggravated FC I/R-induced cerebral infarction and neurological deficits. Parallel with hypoglycemic effects, insulin improved microvascular functions and attenuated FC I/R injury in STZ-diabetic rats. Diabetes decreased the efficacy of NO and superoxide production, but NO and superoxide easily formed peroxynitrite in diabetic rats after FC I/R injury. Insulin treatment significantly rescued the phenomenon.

Conclusions

These results suggest that insulin renders diabetic rats resistant to acute ischemic stroke by arresting NO reaction with superoxide to form peroxynitrite.  相似文献   

3.
The preponderance of epidemiological evidence now points to a strong association between chronic inflammation and cancers of several organs, including the gastrointestinal tract, liver, and lungs. The strongest evidence for a mechanistic link here involves the generation of reactive oxygen and nitrogen species by macrophages and neutrophils that respond to cytokines and other signaling processes arising at sites of inflammation. These reactive species cause oxidation, nitration, halogenation, and deamination of biomolecules of all types, including lipids, proteins, carbohydrates, and nucleic acids, with the formation of toxic and mutagenic products. This review, in honor of Bruce Ames, will focus on recent advances in our understanding of the protein and DNA damage caused by reactive nitrogen species produced by macrophages and neutrophils, with emphasis on nitric oxide, nitrous anhydride, peroxynitrite, and nitrogen dioxide radical.  相似文献   

4.
Peroxisomes are cell organelles bounded by a single membrane with a basically oxidative metabolism. Peroxisomes house catalase and H2O2‐producing flavin‐oxidases as the main protein constituents. However, since their discovery in early fifties, a number of new enzymes and metabolic pathways have been reported to be also confined to these organelles. Thus, the presence of exo‐ and endo‐peptidases, superoxide dismutases, the enzymes of the plant ascorbate‐glutathione cycle plus ascorbate and glutathione, several NADP‐dehydrogenases, and also L‐arginine‐dependent nitric oxide synthase activity has evidenced the relevant role of these organelles in cell physiology. In recent years, the study of new functions of peroxisomes has become a field of intensive research in cell biology, and these organelles have been proposed to be a source of important signal molecules for different transduction pathways. In plants, peroxisomes participate in seed germination, leaf senescence, fruit maturation, response to abiotic and biotic stress, photomorphogenesis, biosynthesis of the plant hormones jasmonic acid and auxin, and in cell signaling by reactive oxygen and nitrogen species (ROS and RNS, respectively). In order to decipher the nature and specific role of the peroxisomal proteins in these processes, several approaches including in vivo and in vitro import assays and generation of mutants have been used. In the last decade, the development of genomics and the report of the first plant genomes provided plant biologists a powerful tool to assign to peroxisomes those proteins which harbored any of the two peroxisomal targeting signals (PTS, either PTS1 or PTS2) described so far. Unfortunately, those molecular approaches could not give any response to those proteins previously localized in plant peroxisomes by classical biochemical and cell biology methods that did not contain any PTS. However, more recently, proteomic studies of highly purified organelles have provided evidence of the presence in peroxisomes of new proteins not previously reported. Thus, the contribution of proteomic approaches to the biology of peroxisomes is essential, not only for elucidation of the mechanisms involved in the import of the PTS1‐ and PTS2‐independent proteins, but also to the understanding of the role of these organelles in the cell physiology of plant growth and development.  相似文献   

5.
Habib S  Moinuddin  Ali A  Ali R 《Cellular immunology》2009,254(2):117-123
Peroxynitrite (ONOO) has been vastly implicated in mutagenesis and cancer development. Present study probes the antigenicity of peroxynitrite damaged DNA (ONOO-DNA) in cancer patients. Purified human placental DNA was damaged by the synergistic action of sodium nitroprusside (SNP) and Pyrogallol for 3 h at 37 °C. Binding characteristics of cancer autoantibodies as well as experimentally induced anti-peroxynitrite-DNA (anti-ONOO-DNA) antibodies were assessed by ELISA and band shift assay. DNA modifications produced single strand breaks, decreased melting temperature (Tm), hyperchromicity in UV spectrum and decreased fluorescence intensity. The ONOO-DNA induced high titre antibodies in experimental animals. Cancer autoantibodies exhibited enhanced binding with the modified DNA as compared to the native form. Lymphocyte DNA from cancer patients showed appreciable recognition of anti-ONOO-DNA IgG as compared to the DNA from healthy subjects. The peroxynitrite modified DNA presents unique epitopes which may be one of the factors for the autoantibody induction in cancer patients.  相似文献   

6.
Nitrated derivatives of unsaturated fatty acids are formed under oxidative and nitrative stress conditions, and are detected and structurally characterized in cell membranes, cardiac tissue, human plasma, and urine. Nitro-fatty acids display pleiotropic activities, including modulation of macrophage activation, prevention of leukocyte and platelet activation, and promotion of blood vessel relaxation. However, mechanisms of formation and levels reached in inflammatory milieu are poorly characterized. In this review, we discuss potential mechanisms of formation of nitro-fatty acids and their key chemical and biochemical properties. A major focus is to analyze nitrated lipids as novel signaling mediators leading to secondary changes in protein function via electrophilic-based modifications as well as inhibition of inflammatory cell function, thus representing the convergence of lipid and nitric oxide signaling pathways.  相似文献   

7.
Many of the cytopathic effects of nitric oxide (NO·) are mediated by peroxynitrite (PN), a product of the reaction between NO· and superoxide radical (O·?2). In the present study, we investigated the role of PN, O·?2 and hydroxyl radical (OH·) as mediators of epithelial hyperpermeability induced by the NO· donor, S-nitroso-N-acetylpenicillamine (SNAP), and the PN generator, 3-morpholinosydnonimine (SIN-1). Caco-2BBe enterocytic monolayers were grown on permeable supports in bicameral chambers. Epithelial permeability, measured as the apical-to-basolateral flux of fluorescein disulfonic acid, increased after 24 h of incubation with 5.0 mM SNAP or SIN-1. Addition of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, an NO· scavenger, or Tiron, an O·?2 scavenger, reduced the increase in permeability induced by both donor compounds. The SNAP-induced increase in permeability was prevented by allopurinol, an inhibitor of xanthine oxidase (a source of endogenous O·?2). Diethyldithiocarbamate, a superoxide dismutase inhibitor, and pyrogallol, an O·?2 generator, potentiated the increase in permeability induced by SNAP. Addition of the PN scavengers deferoxamine, urate, or glutathione, or the OH· scavenger mannitol, attenuated the increase in permeability induced by both SNAP and SIN-1. Both donor compounds decreased intracellular levels of glutathione and protein-bound sulfhydryl groups, suggesting the generation of a potent oxidant. These results support a role for PN, and possibly OH·, in the pathogenesis of NO· donor-induced intestinal epithelial hyperpermeability.  相似文献   

8.
The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO? ) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to NO, MnSOD-derived NO? species initiate the formation of peroxynitrite (ONOO? ) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO? decomposition and ONOO? -dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO? is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of NO.  相似文献   

9.
The present study demonstrates that manganese superoxide dismutase (MnSOD) (Escherichia coli), binds nitric oxide (NO) and stimulates its decay under both anaerobic and aerobic conditions. The results indicate that previously observed MnSOD-catalyzed NO disproportionation (dismutation) into nitrosonium (NO+) and nitroxyl (NO) species under anaerobic conditions is also operative in the presence of molecular oxygen. Upon sustained aerobic exposure to NO, MnSOD-derived NO species initiate the formation of peroxynitrite (ONOO) leading to enzyme tyrosine nitration, oxidation and (partial) inactivation. The results suggest that both ONOO decomposition and ONOO-dependent tyrosine residue nitration and oxidation are enhanced by metal centre-mediated catalysis. We show that the generation of ONOO is accompanied by the formation of substantial amounts of H2O2. MnSOD is a critical mitochondrial antioxidant enzyme, which has been found to undergo tyrosine nitration and inactivation in various pathologies associated with the overproduction of NO. The results of the present study can account for the molecular specificity of MnSOD nitration in vivo. The interaction of NO with MnSOD may represent a novel mechanism by which MnSOD protects the cell from deleterious effects associated with overproduction of NO.  相似文献   

10.
Macrophage-derived nitric oxide (NO) participates in cytotoxic mechanisms against diverse microorganisms and tumor cells. These effects can be mediated by NO itself or NO-derived species such as peroxynitrite formed by its diffusion-controlled reaction with NADPH oxidase-derived superoxide radical anion (O2). In vivo, the facile extracellular diffusion of NO as well as different competing consumption routes limit its bioavailability for the reaction with O2 and, hence, peroxynitrite formation. In this work, we evaluated the extent by which NO diffusion to red blood cells (RBC) can compete with activated macrophages-derived O2 and affect peroxynitrite formation yields. Macrophage-dependent peroxynitrite production was determined by boron-based probes that react directly with peroxynitrite, namely, coumarin-7-boronic acid (CBA) and fluorescein-boronate (Fl-B). The influence of NO diffusion to RBC on peroxynitrite formation was experimentally analyzed in co-incubations of NO and O2-forming macrophages with erythrocytes. Additionally, we evaluated the permeation of NO to RBC by measuring the intracellular oxidation of oxyhemoglobin to methemoglobin. Our results indicate that diluted RBC suspensions dose-dependently inhibit peroxynitrite formation, outcompeting the O2 reaction. Computer-assisted kinetic studies evaluating peroxynitrite formation by its precursor radicals in the presence of RBC are in accordance with experimental results. Moreover, the presence of erythrocytes in the proximity of NO and O2--forming macrophages prevented intracellular Fl-B oxidation pre-loaded in L1210 cells co-cultured with activated macrophages. On the other hand, Fl-B-coated latex beads incorporated in the macrophage phagocytic vacuole indicated that intraphagosomal probe oxidation by peroxynitrite was not affected by nearby RBC. Our data support that in the proximity of a blood vessel, NO consumption by RBC will limit the extracellular formation (and subsequent cytotoxic effects) of peroxynitrite by activated macrophages, while the intraphagosomal yield of peroxynitrite will remain unaffected.  相似文献   

11.
12.
Protein tyrosine nitration is an important post-translational modification mediated by nitric oxide (NO) associated oxidative stress, occurring in a variety of neurodegenerative diseases. In our previous study, an elevated level of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein was observed in different brain regions of acute methamphetamine (METH) treated rats, indicating the possibility of an enhanced expression of protein nitration that is mediated by excess NO through the DDAH1/ADMA (Asymmetric Dimethylated l-arginine)/NOS (Nitric Oxide Synthase) pathway. In the present study, proteomic methods, including stable isotope labeling with amino acids in cell culture (SILAC) and two dimensional electrophoresis, were used to determine the relationship between protein nitration and METH induced neurotoxicity in acute METH treated rats and PC12 cells. We found that acute METH administration evokes a positive activation of DDAH1/ADMA/NOS pathway and results in an over-production of NO in different brain regions of rat and PC12 cells, whereas the whole signaling could be repressed by DDAH1 inhibitor Nω-(2-methoxyethyl)-arginine (l-257). In addition, enhanced expressions of 3 nitroproteins were identified in rat striatum and increased levels of 27 nitroproteins were observed in PC12 cells. These nitrated proteins are key factors for Cdk5 activation, cytoskeletal structure, ribosomes function, etc. l-257 also displayed significant protective effects against METH-induced protein nitration, apoptosis and cell death. The overall results illustrate that protein nitration plays a significant role in the acute METH induced neurotoxicity via the activation of DDAH1/ADMA/NOS pathway.  相似文献   

13.
14.
Liu D  Ling X  Wen J  Liu J 《Journal of neurochemistry》2000,75(5):2144-2154
To determine whether reactive nitrogen species contribute to secondary damage in CNS injury, the time courses of nitric oxide, peroxynitrite, and nitrotyrosine production were measured following impact injury to the rat spinal cord. The concentration of nitric oxide measured by a nitric oxide-selective electrode dramatically increased immediately following injury and then quickly declined. Nitro-L-arginine reduced nitric oxide production. The extracellular concentration of peroxynitrite, measured by perfusing tyrosine through a microdialysis fiber into the cord and quantifying nitrotyrosine in the microdialysates, significantly increased after injury to 3.5 times the basal level, and superoxide dismutase and nitro-L-arginine completely blocked peroxynitrite production. Tyrosine nitration examined immunohistochemically significantly increased at 12 and 24 h postinjury, but not in sham-control sections. Mn(III) tetrakis(4-benzoic acid)-porphyrin (a novel cell-permeable superoxide dismutase mimetic) and nitro-L-arginine significantly reduced the numbers of nitrotyrosine-positive cells. Protein-bound nitrotyrosine was significantly higher in the injured tissue than in the sham-operated controls. These results demonstrate that traumatic injury increases nitric oxide and peroxynitrite production, thereby nitrating tyrosine, including protein-bound tyrosine. Together with our previous report that trauma increases superoxide, our results suggest that reactive nitrogen species cause secondary damage by nitrating protein through the pathway superoxide + nitric oxide peroxynitrite protein nitration.  相似文献   

15.
在脑缺血再灌注损伤中,自由基发挥着重要作用。脑缺血及再灌注可产生大量的自由基,随着这些自由基的聚集,会引发一系列的分子级联反应,从而增加血脑屏障的通透性,诱发脑水肿、出血、炎症反应及细胞死亡。以一氧化氮(NO)及过氧亚硝基阴离子(ONOO-)为代表的活性氮(reactive nitrogen species,RNS),是自由基的重要组成部分,它们在脑缺血再灌注损伤中作用显著。一方面,活性氮能激活基质金属蛋白酶(MMPs),破坏血脑屏障。MMPs作为一大类含2价锌离子的水解酶,其激活可以降解脑血管及神经元细胞外基质。脑缺血再灌注损伤产生NO和ONOO-,它们均可以通过激活MMPs,降解紧密连接蛋白,从而破坏血脑屏障。另一方面,近期研究发现,活性氮也参与了脑缺血后神经再生及修复的调节过程。因此,了解这些活性小分子在血脑屏障破坏及神经再生中的复杂生物活性将很有意义。小窝蛋白1(Caveolin-1)就是活性氮自由基的重要靶分子,它是一种细胞表面的穴样内陷(caveolae)中的膜蛋白,可以通过抑制MMPs的激活保护血脑屏障的完整性。下调Caveolin-1的表达将引起血脑屏障的破坏。脑缺血所产生的NO能下调Caveolin-1的表达,而Caveolin-1的下调,能引起NO合酶的增加,促进生成更多的NO。活性氮与Caveolin-1互相作用,形成了一个反馈回路,通过激活MMPs而造成血脑屏障的不断破坏。此外,Caveolin-1通过调节不同的信号通路,抑制神经干细胞的增长及向神经元分化。因此,活性氮也很可能通过调节Caveolin-1及其他信号通路调控神经再生。在这篇文章中,我们对活性氮在血脑屏障及神经再生中的近期研究进展进行了综述。我们认为,活性氮可能在脑缺血再灌注中起双重作用,既是细胞毒性分子,亦可能是神经再生中的重要信号分子,其作用与其在神经元、内皮细胞及其微环境中产生的量有重要的关系。  相似文献   

16.
17.
We studied the capacity of macrophage-derived peroxynitrite to diffuse into and exert cytotoxicity against Trypanosoma cruzi, the causative agent of Chagas' disease. In two types of macrophage-T. cruzi co-cultures, one with a fixed separation distance between source and target cells, and another involving cell-to-cell interactions, peroxynitrite resulted in significant oxidation of intracellular dihydrorhodamine and inhibition of [(3)H]thymidine incorporation in T. cruzi, which were not observed by superoxide or nitric oxide alone. The effects were attenuated in the presence of bicarbonate, in agreement with the extracellular consumption of peroxynitrite by its fast reaction with CO(2). However, studies using different T. cruzi densities, which allow to modify average diffusion distances of exogenously added peroxynitrite to target cells, indicate that at distances <5 microm, the diffusion process outcompetes the reaction with CO(2) and that the levels of peroxynitrite formed by macrophages would be sufficient to cause toxicity to T. cruzi during cell-to-cell contact and/or inside the phagosome.  相似文献   

18.
Nitric oxide (NO) is known to mediate a multitude of biological effects including inhibition of respiration at cytochrome c oxidase (COX), formation of peroxynitrite (ONOO-) by reaction with mitochondrial superoxide (O2*-), and S-nitrosylation of proteins. In this study, we investigated pathways of NO metabolism in lymphoblastic leukemic CEM cells in response to glutathione (GSH) depletion. We found that NO blocked mitochondrial protein thiol oxidation, membrane permeabilization, and cell death. The effects of NO were: (1) independent of respiratory chain inhibition since protection was also observed in CEM cells lacking mitochondrial DNA (rho0) which do not possess a functional respiratory chain and (2) independent of ONOO- formation since nitrotyrosine (a marker for ONOO- formation) was not detected in extracts from cells treated with NO after GSH depletion. However, NO increased the level of mitochondrial protein S-nitrosylation (SNO) determined by the Biotin Switch assay and by the release of NO from mitochondrial fractions treated with mercuric chloride (which cleaves SNO bonds to release NO). In conclusion, these results indicate that NO blocks cell death after GSH depletion by preserving the redox status of mitochondrial protein thiols probably by a mechanism that involves S-nitrosylation of mitochondrial protein thiols.  相似文献   

19.
Oxidative stress in the placenta   总被引:22,自引:4,他引:22  
Pregnancy is a state of oxidative stress arising from increased placental mitochondrial activity and production of reactive oxygen species (ROS), mainly superoxide anion. The placenta also produces other ROS including nitric oxide, carbon monoxide, and peroxynitrite which have pronounced effects on placental function including trophoblast proliferation and differentiation and vascular reactivity. Excessive production of ROS may occur at certain windows in placental development and in pathologic pregnancies, such as those complicated by preeclampsia and/or IUGR, overpowering antioxidant defenses with deleterious outcome. In the first trimester, establishment of blood flow into the intervillous space is associated with a burst of oxidative stress. The inability to mount an effective antioxidant defense against this results in early pregnancy loss. In late gestation increased oxidative stress is seen in pregnancies complicated by diabetes, IUGR, and preeclampsia in association with increased trophoblast apoptosis and deportation and altered placental vascular reactivity. Evidence for this oxidative stress includes increased lipid peroxides and isoprostanes and decreased expression and activity of antioxidants. The interaction of nitric oxide and superoxide produces peroxynitrite, a powerful prooxidant with diverse deleterious effects including nitration of tyrosine residues on proteins thus altering function. Nitrative stress, subsequent to oxidative stress is seen in the placenta in preeclampsia and diabetes in association with altered placental function.  相似文献   

20.
Recently, a role for NF-κB in upregulation of proteolytic systems and protein degradation has emerged. Reactive nitrogen species (RNS) have been demonstrated to induce NF-κB activation. The aim of this study was to investigate whether RNS caused increased proteolysis in skeletal muscle cells, and whether this process was mediated through the activation of NF-κB. Fully differentiated L6 myotubes were treated with NO donor SNAP, peroxynitrite donor SIN-1, and authentic peroxynitrite, in a time-dependent manner. NF-κB activation, the activation of the ubiquitin-proteasome pathway and matrix metalloproteinases, and the levels of muscle-specific proteins (myosin heavy chain and telethonin) were investigated under the conditions of nitrosative stress. RNS donors caused NF-κB activation and increased activation of proteolytic systems, as well as the degradation of muscle-specific proteins. Antioxidant treatment, tyrosine nitration inhibition, and NF-κB molecular inhibition were proven effective in downregulation of NF-κB activation and slowing down the degradation of muscle-specific proteins. Peroxynitrite, but not NO, causes proteolytic system activation and the degradation of muscle-specific proteins in cultured myotubes, mediated through NF-κB. NF-κB inhibition by antioxidants, tyrosine nitration, and molecular inhibitors may be beneficial for decreasing the extent of muscle damage induced by RNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号