首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phenylpropenes, such as eugenol and trans‐anethole, are important aromatic compounds that determine flavour and aroma in many herbs and spices. Some apple varieties produce fruit with a highly desirable spicy/aromatic flavour that has been attributed to the production of estragole, a methylated phenylpropene. To elucidate the molecular basis for estragole production and its contribution to ripe apple flavour and aroma we characterised a segregating population from a Royal Gala (RG, estragole producer) × Granny Smith (GS, non‐producer) apple cross. Two quantitative trait loci (QTLs; accounting for 9.2 and 24.8% of the variation) on linkage group (LG) 1 and LG2 were identified that co‐located with seven candidate genes for phenylpropene O‐methyltransferases (MdoOMT1–7). Of these genes, only expression of MdoOMT1 on LG1 increased strongly with ethylene and could be correlated with increasing estragole production in ripening RG fruit. Transient over‐expression in tobacco showed that MdoOMT1 utilised a range of phenylpropene substrates and catalysed the conversion of chavicol to estragole. Royal Gala carried two alleles (MdoOMT1a, MdoOMT1b) whilst GS appeared to be homozygous for MdoOMT1b. MdoOMT1a showed a higher affinity and catalytic efficiency towards chavicol than MdoOMT1b, which could account for the phenotypic variation at the LG1 QTL. Multiple transgenic RG lines with reduced MdoOMT1 expression produced lower levels of methylated phenylpropenes, including estragole and methyleugenol. Differences in fruit aroma could be perceived in these fruit, compared with controls, by sensory analysis. Together these results indicate that MdoOMT1 is required for the production of methylated phenylpropenes in apple and that phenylpropenes including estragole may contribute to ripe apple fruit aroma.  相似文献   

3.
In order to broaden the available genetic variation of melon, we developed an ethyl methanesulfonate mutation library in an orange-flesh ‘Charentais’ type melon line that accumulates β-carotene. One mutagenized M2 family segregated for a novel recessive trait, a yellow–orange fruit flesh (‘yofI’). HPLC analysis revealed that ‘yofI’ accumulates pro-lycopene (tetra-cis-lycopene) as its major fruit pigment. The altered carotenoid composition of ‘yofI’ is associated with a significant change of the fruit aroma since cleavage of β-carotene yields different apocarotenoids than the cleavage of pro-lycopene. Normally, pro-lycopene is further isomerized by CRTISO (carotenoid isomerase) to yield all-trans-lycopene, which is further cyclized to β-carotene in melon fruit. Cloning and sequencing of ‘yofI’ CRTISO identified two mRNA sequences which lead to truncated forms of CRTISO. Sequencing of the genomic CRTISO identified an A–T transversion in ‘yofI’ which leads to a premature STOP codon. The early carotenoid pathway genes were up regulated in yofI fruit causing accumulation of other intermediates such as phytoene and ζ-carotene. Total carotenoid levels are only slightly increased in the mutant. Mutants accumulating pro-lycopene have been reported in both tomato and watermelon fruits, however, this is the first report of a non-lycopene accumulating fruit showing this phenomenon.  相似文献   

4.
The ‘fruity’ attributes of ripe apples (Malus × domestica) arise from our perception of a combination of volatile ester compounds. Phenotypic variability in ester production was investigated using a segregating population from a ‘Royal Gala’ (RG; high ester production) × ‘Granny Smith’ (GS; low ester production) cross, as well as in transgenic RG plants in which expression of the alcohol acyl transferase 1 (AAT1) gene was reduced. In the RG × GS population, 46 quantitative trait loci (QTLs) for the production of esters and alcohols were identified on 15 linkage groups (LGs). The major QTL for 35 individual compounds was positioned on LG2 and co‐located with AAT1. Multiple AAT1 gene variants were identified in RG and GS, but only two (AAT1‐RGa and AAT1‐GSa) were functional. AAT1‐RGa and AAT1‐GSa were both highly expressed in the cortex and skin of ripe fruit, but AAT1 protein was observed mainly in the skin. Transgenic RG specifically reduced in AAT1 expression showed reduced levels of most key esters in ripe fruit. Differences in the ripe fruit aroma could be perceived by sensory analysis. The transgenic lines also showed altered ratios of biosynthetic precursor alcohols and aldehydes, and expression of a number of ester biosynthetic genes increased, presumably in response to the increased substrate pool. These results indicate that the AAT1 locus is critical for the biosynthesis of esters contributing to a ‘ripe apple’ flavour.  相似文献   

5.
The complete 15,223-bp mitochondrial genome (mitogenome) of Tryporyza incertulas (Walker) (Lepidoptera: Pyraloidea: Crambidae) was determined, characterized and compared with seven other species of superfamily Pyraloidea. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. Compared with other moths of Pyraloidea, the A + T biased (77.0%) of T. incertulas was the lowest. Eleven protein-coding genes (PCGs) utilized the standard ATN, but cox1 used CGA and nad4 used AAT as the initiation codons. Ten protein-coding genes had the common stop codon TAA, except nad3 having TAG as the stop codon, and cox2, nad4 using T, TA as the incomplete stop codons, respectively. All of the tRNA genes had typical cloverleaf secondary structures except trnS1(AGN), in which the dihydrouridine (DHU) arm did not form a stable stem-loop structure. There was a spacer between trnQ and nad2, which was common in Lepidoptera moths. A 6-bp motif ‘ATACTA’ between trnS2(UCN) and nad1, a 7-bp motif “AGC(T)CTTA” between trnW and trnC and a 6-bp motif “ATGATA” of overlapping region between atp8 and atp6 were found in Pyraloidea moths. The A + T-rich region contained an ‘ATAGT(A)’-like motif followed by a poly-T stretch. In addition, two potential stem-loop structures, a duplicated 19-bp repeat element, and two microsatellites ‘(TA)12’ and ‘(TA)9’ were observed in the A + T-rich region of T. incertulas mitogenome. Finally, the phylogenetic relationships of Pyraloidea species were constructed based on amino acid sequences of 13 PCGs of mitogenomes using Bayesian inference (BI) and maximum likelihood (ML) methods. These molecular-based phylogenies supported the morphological classification on relationships within Pyraloidea species.  相似文献   

6.
Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2‐methylbutyl acetate and hexyl acetate) both co‐located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518 ), and here we show it is also required to produce p‐hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic ‘Royal Gala’ MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over‐expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O‐methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p‐coumaryl and coniferyl alcohols, indicating that ripening‐related AATs are likely to link volatile ester and phenylpropene production in many different fruit.  相似文献   

7.
A comparison of the rate of ethylene production by apple fruit to the methionine content of the tissue suggests that the sulfur of methionine has to be recycled during its continuous synthesis of ethylene. The metabolism of the sulfur of methionine in apple tissue in relation to ethylene biosynthesis was investigated. The results showed that in the conversion of methionine to ethylene the CH3S-group of methionine is first incorporated as a unit into S-methylcysteine. By demethylation, S-methylcysteine is metabolized to cysteine. Cysteine then donates its sulfur to form methionine, presumably through cystathionine and homocysteine. This view is consistent with the observation that cysteine, homoserine and homocysteine were all converted to methionine, in an order of efficiency from least to greatest. For the conversion to ethylene, methionine was the most efficient precursor, followed by homocysteine and homoserine. Based on these results, a methionine-sulfur cycle in relation to ethylene biosynthesis is presented.  相似文献   

8.
9.
A yeast strain, in which endogenous phosphatidylcholine (PC) synthesis is controllable, was constructed by the replacement of the promoter of PCT1, encoding CTP:phosphocholine cytidylyltransferase, with GAL1 promoter in a double deletion mutant of PEM1 and PEM2, encoding phosphatidylethanolamine methyltransferase and phospholipid methyltransferase, respectively. This mutant did not grow in the glucose-containing medium, but the addition of dioctanoyl-phosphatidylcholine (diC8PC) supported its growth. Analyses of the metabolism of 13C-labeled diC8PC ((methyl-13C)3-diC8PC) in this strain using electrospray ionization tandem mass spectrometry revealed that it was converted to PC species containing acyl residues of 16 or 18 carbons at both sn-1 and sn-2 positions. In addition, both acyl residues of (methyl-13C)3-diC8PC were replaced with 16:1 acyl chains in the in vitro reaction using the yeast cell extract in the presence of palmitoleoyl-CoA. These results indicate that PC containing short acyl residues was remodeled to those with acyl chains of physiological length in yeast.  相似文献   

10.
Two 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) genes have been cloned from RNA isolated from leaf tissue of apple (Malus domestica cv. Royal Gala). The genes, designated MD-ACO2 (with an ORF of 990 bp) and MD-ACO3 (966 bp) have been compared with a previously cloned gene of apple, MD-ACO1 (with an ORF of 942 bp). MD-ACO1 and MD-ACO2 share a close nucleotide sequence identity of 93.9% in the ORF but diverge in the 3′ untranslated regions (3′-UTR) (69.5%). In contrast, MD-ACO3 shares a lower sequence identity with both MD-ACO1 (78.5%) and MD-ACO2 (77.8%) in the ORF, and 68.4% (MD-ACO1) and 71% (MD-ACO2) in the 3′-UTR. Southern analysis confirmed that MD-ACO3 is encoded by a distinct gene, but the distinction between MD-ACO1 and MD-ACO2 is not as definitive. Gene expression analysis has shown that MD-ACO1 is restricted to fruit tissues, with optimal expression in ripening fruit, MD-ACO2 expression occurs more predominantly in younger fruit tissue, with some expression in young leaf tissue, while MD-ACO3 is expressed predominantly in young and mature leaf tissue, with less expression in young fruit tissue and least expression in ripening fruit. Protein accumulation studies using western analysis with specific antibodies raised to recombinant MD-ACO1 and MD-ACO3 produced in E. coli confirmed the accumulation of MD-ACO1 in mature fruit, and an absence of accumulation in leaf tissue. In contrast, MD-ACO3 accumulation occurred in younger leaf tissue, and in younger fruit tissue. Further, the expression of MD-ACO3 and accumulation of MD-ACO3 in leaf tissue is linked to fruit longevity. Analysis of the kinetic properties of the three apple ACOs using recombinant enzymes produced in E. coli revealed apparent Michaelis constants (Km) of 89.39 μM (MD-ACO1), 401.03 μM (MD-ACO2) and 244.5 μM (MD-ACO3) for the substrate ACC, catalytic constants (Kcat) of 6.6 × 10−2 (MD-ACO1), 3.44 × 10−2 (Md-ACO2) and 9.14 × 10−2 (MD-ACO3) and Kcat/Km (μM s−1) values of 7.38 × 10−4 μM s−1 (MD-ACO1), 0.86 × 10−4 M s−1 (MD-ACO2) and 3.8 × 10−4 μM s−1 (MD-ACO3). These results show that MD-ACO1, MD-ACO2 and MD-ACO3 are differentially expressed in apple fruit and leaf tissue, an expression pattern that is supported by some variation in kinetic properties.  相似文献   

11.
12.
Insecticidal proteins are a potential resource to enhance resistance to insect pests in transgenic plants. Here, we describe the generation and analysis of the apple cultivar ‘Royal Gala’ transgenic for Nicotiana alata (N. alata) proteinase inhibitor (PI) and the impact of this PI on the growth and development of the Epiphyas postvittiana (light-brown apple moth). A cDNA clone encoding a proteinase inhibitor precursor from N. alata (Na-PI) under the control of either a double 35S promoter or a promoter from a ribulose-1,5-bisphosphate carboxylase small sub-unit gene (rbcS-E9 promoter) was stably incorporated into ‘Royal Gala’ apple using Agrobacterium-mediated transformation. A 40.3 kDa Na-PI precursor protein was expressed and correctly processed into 6-kDa proteinase inhibitors in the leaves of transgenic apple lines. The 6-kDa polypeptides accumulated to levels of 0.05 and 0.1% of the total soluble protein under the control of the rbc-E9 promoter and the double 35S promoter, respectively. Light-brown apple moth larvae fed with apple leaves expressing Na-PI had significantly reduced body weight after 7 days of feeding and female pupae were 19–28% smaller than controls. In addition, morphological changes such as pupal cases attached to the wing, deformed wings, deformed body shape, and pupal cases and curled wings attached to a deformed body were observed in adults that developed from larvae fed with apple leaves expressing Na-PI, when compared to larvae fed with the non-transformed apple leaves.  相似文献   

13.
14.
15.
16.
The inclusion of (R)- and (S)-camphor compounds in α-cyclodextrin has been studied by X-ray crystallography. The crystal structures of the complexes reveal that one guest molecule is accommodated inside the cavity formed by a head-to-head cyclodextrin dimer. In the crystal lattice, the dimers form layers which are successively shifted by half a dimer. In both (R)- and (S)-cases, the camphor molecule exhibits disorder and occupies three major sites with orientations that can be described as either ‘polar’ or ‘equatorial’. Molecular dynamics simulations performed for the observed complexes indicate that although the carbonyl oxygen of both (R)- and (S)-camphor switches between different hydrogen bonding partners, it maintains the observed mode of ‘polar’ or ‘equatorial’ alignment.  相似文献   

17.
18.
19.
20.
The N-terminal segment of the Semliki Forest virus polyprotein is an intramolecular serine protease that cleaves itself off after the invariant Trp267 from a viral polyprotein and generates the mature capsid protein. After this autoproteolytic cleavage, the free carboxylic group of Trp267 interacts with the catalytic triad (His145, Asp167 and Ser219) and inactivates the enzyme. We have deleted the last 1-7 C-terminal residues of the mature capsid protease to investigate whether removal of Trp267 regenerates enzymatic activity. Although the C-terminally truncated polypeptides do not adopt a defined three-dimensional structure and show biophysical properties observed in natively unfolded proteins, they efficiently catalyse the hydrolysis of aromatic amino acid esters, with higher catalytic efficiency for tryptophan compared to tyrosine esters and kcat/KM values up to 5 × 105 s−1 M−1. The enzymatic mechanism of these deletion variants is typical of serine proteases. The pH enzyme activity profile shows a pKa1 = 6.9, and the Ser219Ala substitution destroys the enzymatic activity. In addition, the fast release of the first product of the enzymatic reaction is followed by a steady-state second phase, indicative of formation and breakdown of a covalent acyl-enzyme intermediate. The rates of acylation and deacylation are k2 = 4.4±0.6 s−1 and k3 = 1.6±0.5 s−1, respectively, for a tyrosine derivative ester substrate, and the amplitude of the burst phase indicates that 95% of the enzyme molecules are active. In summary, our data provide further evidence for the potential catalytic activity of natively unfolded proteins, and provide the basis for engineering of alphavirus capsid proteins towards hydrolytic enzymes with novel specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号