首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Seasonal changes in herbivore numbers and in plant defenses are well known to influence plant–herbivore interactions. Some plant defenses are induced in response to herbivore attack or cues correlated with risk of attack although seasonal variation in these defenses is relatively poorly known. We previously reported that sagebrush becomes more resistant to its herbivores when neighboring plants have been experimentally clipped with scissors. In this study we asked whether herbivory to leaves of sagebrush varied seasonally and whether there was seasonal variation in natural levels of damage when neighbors were clipped. We found that sagebrush accumulated most chewing damage early in the season, soon after the spring flush of new leaves. This damage was caused by generalist grasshoppers, deer, specialist caterpillars, beetles, gall makers, and other less common herbivores. Sagebrush showed no evidence of preferentially abscising leaves that had been experimentally clipped. Experimental clipping by Trirhabda pilosa beetle larvae caused neighbors to accumulate less herbivore damage later that season, similar to results in which clipping was done with scissors. Induced resistance caused by experimentally clipping a neighbor was affected by season; plants with neighbors clipped in May accumulated less damage throughout the season relative to plants with unclipped neighbors or neighbors clipped later in the summer. We found a correlation between seasonal herbivore pressure, damage accumulated by plants, and induced responses to experimentally clipping neighbors. The causal mechanisms responsible for this correlation are unknown although a strong seasonal effect was clear.  相似文献   

2.
Abstract Little attention has been paid to the impact that constitutive and inducible plant resistance traits will have on herbivore spatial dynamics. We investigate mathematical models in which herbivore demographic rates and movement rates respond to host plant quality, which in turn is determined by constitutive and inducible resistance. Models with and without induced resistance yield the same analytic expression for the asymptotic speed at which a herbivore population will spread through an initially uninduced plant population, suggesting that induced resistance will have no effect on the rate of invasion of herbivores that respond to plant resistance on small spatial scales. In contrast, constitutive resistance will influence the speed of an invasion. If herbivore movement is quite sensitive to plant quality, an increase in constitutive resistance can actually accelerate the rate of herbivore spread even while it reduces the herbivore's intrinsic rate of increase. In other scenarios, the rate of invasion attains a maximum at intermediate levels of constitutive resistance. These results argue that our view of plant resistance should be broadened to include herbivore movement if we are to understand fully the implications of differences in resistance for the dynamics of herbivore populations in natural and managed settings.  相似文献   

3.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore''s growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3.We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.  相似文献   

4.
Plant–herbivore interactions are influenced by chemical plant traits, which can vary depending on the plants’ abiotic and biotic environment. Drought events, which are predicted to become more frequent and prolonged due to climate change, may affect primary and secondary plant metabolites contributing to constitutive resistance. Furthermore, the ability of plants to respond to herbivore attack in terms of induced resistance may be altered under drought conditions. We assessed the effects of drought stress on constitutive and induced apple plant resistance to a generalist insect herbivore by quantifying plant and herbivore responses in concert. Plants were exposed to different drought stress intensities (constitutive resistance) and subsequently to herbivore damage treatments that included different damage durations (induced resistance). As drought stress intensified, plant growth and concentrations of the leaf phenolic phloridzin decreased, whereas leaf glucose concentrations increased. Changes in fructose concentrations and in herbivore feeding preferences indicated a non-monotonic shift in constitutive resistance. Moderately stressed plants showed reduced fructose concentrations and were consumed least, while severely stressed plants were fructose-enriched and consumed most compared to well-watered control plants showing intermediate fructose concentrations and palatability. We found no evidence for effects of drought stress on induced resistance, as herbivore feeding preferences for undamaged over damaged plants were independent of drought intensity. Our results suggest a strong role of primary metabolites for drought-dependent variation in constitutive plant resistance and offer novel experimental insights into the effects of drought stress on induced plant resistance across a gradient of water deprivation.  相似文献   

5.
Following its introduction into Europe (EU), the common milkweed (Asclepias syriaca) has been free of most specialist herbivores that are present in its native North American (NA) range, except for the oleander aphid Aphis nerii. We compared EU and NA populations of A. nerii on EU and NA milkweed populations to test the hypothesis that plant–insect interactions differ on the two continents. First, we tested if herbivore performance is higher on EU plants than on NA plants, because the former have escaped most of their herbivores and have perhaps been selected for lower defence levels following introduction. Second, we compared two A. nerii lines (one from each continent) to test whether genotypic differences in the herbivore may influence species interactions in plant–herbivore communities in the context of species introductions. The NA population of A. nerii developed faster, had higher fecundity and attained higher population growth rates than the EU population. There was no overall significant continental difference in aphid resistance between the plants. However, milkweed plants from EU supported higher population growth rates and faster development of the NA line of A. nerii than plants from NA. In contrast, EU aphids showed similar (low) performance across plant populations from both continents. In a second experiment, we examined how chewing herbivores indirectly mediate interactions between milkweeds and aphids, and induced A. syriaca plants from each continent by monarch caterpillars (Danaus plexippus) to compare the resulting changes in plant quality on EU aphid performance. As specialist chewing herbivores of A. syriaca are only present in NA, we expected that plants from the two continents may affect aphid growth in different ways when they are challenged by a specialist chewing herbivore. Caterpillar induction decreased aphid developmental times on NA plants, but not on EU plants, whereas fecundity and population growth rates were unaffected by induction on both plant populations. The results show that genetic variation in the plants as well as in the herbivores can determine the outcome of plant–herbivore interactions.  相似文献   

6.
Studies on the effects of plant diversity on insect herbivory have produced conflicting results. Plant diversity has been reported to cause positive and negative responses of herbivores. Explanations for these conflicting responses include not only various population-level processes but also changes in plant quality that lead to changes in herbivore performance. In a tree diversity experiment, we investigated the effects of tree diversity on insect herbivory on oak in general and whether the effects of tree diversity on herbivore damage are reflected by the performance (leaf consumption, growth) of the generalist herbivore Lymantria dispar. Our study showed that the feeding damage caused by naturally occurring herbivores on oak trees decreased with increasing diversity of tree stands. The performance of L. dispar on oak leaves was not affected by tree diversity, neither in field nor laboratory experiments. Our results can be explained by the various processes behind the hypothesis of associational resistance.  相似文献   

7.
Risto Virtanen 《Oikos》2000,90(2):295-300
The density-dependent effect of induced plant resistance on herbivore populations depends on the relationship between the amount of herbivore damage and the level of induced resistance produced by the plant. This relationship should influence the interaction of induced resistance and herbivore population dynamics, and if the relationship varies among plant genotypes, it could be subject to natural selection by herbivores. In this study the relationship between percent leaf area damaged and level of induced resistance was characterized for four genotypes of soybeans grown in a greenhouse. Damage ranging from 8 to 92% of leaf area was imposed using Mexican bean beetle larvae, and induced resistance was measured by bioassay using Mexican bean beetle adults. The level of induced resistance was significantly affected by the amount of damage, and the level of induced resistance varied significantly among the four genotypes. There was also a marginally significant interaction of damage and plant genotype, suggesting that the form of density dependence varies among these four genotypes of soybeans. These results suggest that these genotypes of plants might affect herbivore populations differently. If this variation is heritable, the form of density-dependent effects of induced resistance has the potential to evolve in this system.  相似文献   

8.
We study a series of spatially implicit lottery models in which two competing plant species, with and without defensive traits, are grazed by a herbivore in a homogeneous habitat. One species (palatable) has no defensive traits, while the other (defended) has defensive traits but suffers reduced reproduction as the result of an assumed trade-off. Not surprisingly, coexistence of these plants cannot occur when the herbivore density is very low (the palatable plant always wins) or very high (the defended plant wins). At intermediate densities, however, herbivory can mediate plant coexistence, even in a homogeneous environment. If the herbivore eats several plants per bite, and its forage-selection depends on the average palatability of the plants it eats, then palatable species in the immediate neighbourhood of defended plants may be more likely to persist (associational resistance) even at higher grazing pressure. If the herbivore shows a positive numerical response to the average palatability of the habitat as a whole, then both plant populations are stabilized and coexistence is promoted, because both species obtain a minority advantage through the negative feedback caused by herbivory. If the herbivore exhibits both of these traits, the system may have at most two non-trivial equilibria, one of which is stable and the other unstable. This means that coexistence in such a system is vulnerable to large fluctuations in herbivore density and identity, and this has implications for conservation in systems where large herbivores are managed to promote plant diversity.  相似文献   

9.
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish.  相似文献   

10.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

11.
Although it has been suggested that induced and constitutive plant resistance should have different effects on insect herbivore population dynamics, there is little experimental evidence that plant resistance can influence herbivore populations longer than one season. We used a density-manipulation experiment and model fitting to examine the effects of constitutive and induced resistance on herbivore dynamics over both the short and long term. We used likelihood methods to fit population dynamic models to recruitment data for populations of Mexican bean beetles on soybean varieties with no resistance, constitutive resistance, or induced resistance. We compared model configurations that fit parameters for resistance types separately to models that did not account for resistance type. Models representing the hypothesis that the three resistance types differed in their effects on beetle dynamics received the most support. Induced resistance resulted in lower population growth rates and stronger density dependence than no resistance. Constitutive resistance resulted in lower population growth rates and stronger density dependence than induced resistance. Constitutive resistance had a stronger effect on both short-term beetle recruitment and predicted beetle population dynamics than induced resistance. The results of this study suggest that induced and constitutive resistance can differ in their effects on herbivore populations even in a relatively complex system.  相似文献   

12.
Goranson CE  Ho CK  Pennings SC 《Oecologia》2004,140(4):591-600
Current theories of plant-herbivore interactions suggest that plants may differ in palatability to herbivores as a function of abiotic stress; however, studies of these theories have produced mixed results. We compared the palatability of eight common salt marsh plants that occur across elevational and salinity stress gradients to six common leaf-chewing herbivores to determine patterns of plant palatability. The palatability of every plant species varied across gradients of abiotic stress in at least one comparison, and over half of the comparisons indicated significant differences in palatability. The direction of the preferences, however, was dependent on the plant and herbivore species studied, suggesting that different types of stress affect plants in different ways, that different plant species respond differently to stress, and that different herbivore species measure plant quality in different ways. Overall, 51% of the variation in the strength of the feeding preferences could be explained by a knowledge of the strength of the stress gradient and the type of gradient, plant and herbivore studied. This suggests that the prospects are good for a more complex, conditional theory of plant stress and herbivore feeding preferences that is based on a mechanistic understanding of plant physiology and the factors underlying herbivore feeding preferences.  相似文献   

13.
Gutbrodt B  Mody K  Wittwer R  Dorn S 《Planta》2011,233(6):1199-1207
Induction of plant resistance by herbivory is a complex process, which follows a temporal dynamic and varies spatially at the within-plant scale. This study aimed at improving the understanding of the induction process in terms of time scale and within-plant allocation, using apple tree seedlings (Malus × domestica) as plant model. Feeding preferences of a leaf-chewing insect (Spodoptera littoralis) for previously damaged and undamaged plants were assessed for six different time intervals with respect to the herbivore damage treatment and for three leaf positions. In addition, main secondary defense compounds were quantified and linked to herbivore feeding preferences. Significant herbivore preference for undamaged plants (induced resistance) was first observed 3 days after herbivore damage in the most apical leaf. Responses were delayed in the other leaf positions, and induced resistance decreased within 10 days after herbivore damage simultaneously in all tested leaf positions. Chemical analysis revealed higher concentrations of the flavonoid phloridzin in damaged plants as compared to undamaged plants. This indicates that herbivore preference for undamaged apple plants may be linked to phloridzin, which is the main secondary metabolite of apple leaves. The observed time course and distribution of resistance responses within plants contribute to the understanding of induction processes and patterns, and support the optimal defense theory stating young tissue to be prioritized. Moreover, induced resistance responses occurred also basipetally in leaves below the damage site, which suggests that signaling pathways involved in resistance responses are not unidirectional.  相似文献   

14.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

15.
Abstract. 1. Although both genotype and induced responses affect a plant's resistance to herbivores, little is known about their relative and interactive effects. This study examined how plant genotype of a native plant (Oenothera biennis) and induced plant responses to herbivory affect resistance to, and interactions among, several herbivores. 2. In a field experiment, genetic and environmental variation among habitats led to variation in the amount of early season damage and plant quality. The pattern of variation in early season infestation by spittlebugs (Philaenus spumarius, a piercing–sucking herbivore) negatively correlated with oviposition preference by a later feeding specialist weevil (Tyloderma foveolatum, a leaf‐chewer). 3. To determine if plant genotype and induced responses to herbivory might be responsible for these field patterns, we performed no‐choice and choice bioassays using four genotypes of O. biennis that varied in resistance. Plants were induced by either spittlebugs or weevils and assays measured the responses of the same specialist weevil as well as a generalist caterpillar (Spodoptera exigua). 4. Resistance to adult weevils was largely unaffected by plant genotype, while they experienced induced resistance following damage by conspecific weevils in no‐choice assays. Caterpillars were more strongly affected by plant genotype than induced responses in both no‐choice and choice assays, but they also fed less and experienced higher mortality on plants previously damaged by weevils. In contrast to the pattern suggested by the field experiment, spittlebugs did consistently induce resistance against either weevils or caterpillars in the bioassay experiment. 5. These results support recent findings that show herbivore species can compete via induced plant responses. Additionally, a quantitative review of the literature demonstrates that plant genotype tends to be more important than interspecific competition among herbivores (plant‐mediated or otherwise) in affecting herbivore preference and performance.  相似文献   

16.
Plants in nature are attacked sequentially by herbivores, and theory predicts that herbivore-specific responses allow plants to tailor their defenses. We present a novel field test of this hypothesis, and find that specific responses of Solanum dulcamara lead to season-long consequences for two naturally colonizing herbivores, irrespective of the second herbivore to attack plants. This result indicates that responses induced by the initial herbivore made plants less responsive to subsequent attack. We show that initial herbivory by flea beetles and tortoise beetles induce distinct plant chemical responses. Initial herbivory by flea beetles lowered the occurrence of conspecifics and tortoise beetles relative to controls. Conversely, initial herbivory by tortoise beetles did not influence future herbivory. Remarkably, the experimentally imposed second herbivore to feed on plants did not modify consequences (induced resistance or lack thereof) of the first attacker. Induction of plant chemical responses was consistent with these ecological effects; i.e. the second herbivore did not modify the plant's initial induced response. Thus, canalization of the plant resistance phenotype may constrain defensive responses in a rapidly changing environment.  相似文献   

17.
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.  相似文献   

18.
Blossey and Nötzold (1995) recently hypothesised that the increased vigour of certain invasive plant species has been at the expense of defences against natural enemies. A prediction of their evolution of increased competitive ability (EICA) hypothesis is that invasive genotypes are relatively poorly defended. We tested this prediction with herbivore bioassays and with direct quantification of plant secondary metabolites comparing non-indigenous genotypes of Lythrum salicaria L. (purple loosestrife) with indigenous forms. The herbivore bioassays revealed no significant intra-specific variation in herbivore resistance between indigenous and non-indigenous hosts. The phenolic content of L. salicaria leaves was significantly higher in indigenous genotypes, as predicted by the EICA hypothesis. The average phenolic content of leaves (regardless of their origin) was, however, low, implying that the role of plant phenolics in purple loosestrife anti-herbivore defence is probably limited. It is suggested that the EICA hypothesis, as tested in the current study, does not explain the increased vigour of L. salicaria in non-indigenous habitats.  相似文献   

19.
Summary Ramets from six Solidago altissima clones of known resistance to the stem gallmaker Eurosta solidaginis were grown with and without supplemental nutrients. In a greenhouse experiment, mated female Eurosta were allowed to oviposit in ramets that were subsequently grown through flowering and then harvested to determine biomass allocation. Supplemental nutrients increased plant biomass but did not affect resistance to this gallmaking herbivore. This result does not conform to the plant carbon/nutrient balance hypothesis which predicts that enhanced mineral nutrition will indirectly cause a reduction in carbon-based defensive chemistry. Our results indicate a strong genetic basis to ball gallmaker resistance since modification of host phenotype did not influence susceptibility. We suggest that evaluating the degree of genotypic or environmental control of plant resistance will be especially helpful in clarifying the patterns of defensive chemical responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号