首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory, greenhouse, and field experiments were performed with the objective of selecting efficient indigenous strains of entomopathogenic nematodes (EPNs) from Rio Grande do Sul (RS) state, Brazil, for controlling the South American fruit fly, Anastrepha fraterculus (Wied.). Laboratory experiments were conducted in 24 well-plates filled with sterile sand and one insect per well. In greenhouse experiments, plastic trays filled with soil collected from the field were used, while in field experiments, holes were made in soil under the edge of peach tree canopies. Among 19 EPN strains tested, Heterorhabditis bacteriophora Poinar RS88 and Steinernema riobrave Cabanillas, Poinar, & Raulston RS59 resulted in higher A. fraterculus larval (pre-pupal) and pupal mortality, with LD90 of 1630, 457 and 2851, 423 infective juveniles (IJs)/cm2, respectively. Greenhouse experiments showed no differences in pupal mortality at 250 and 500 IJs/cm2 of either nematode. In the field, H. bacteriophora RS88 and S. riobravae RS59 sprayed individually over natural and artificially infested fruit (250 IJs/cm2) resulted in A. fraterculus larval mortality of 51.3%, 28.1% and 20%, 24.3%, respectively. There was no significant difference in A. fraterculus pupal mortality sprayed with an aqueous suspension of either nematode; however, when using infected insect cadavers, H. bacteriophora RS88 was more efficient than S. riobrave RS59. Our results showed that H. bacteriophora RS88 was more virulent to insect larvae, with an efficient host search inside the infested fruit and control of pupae in the soil after being applied by aqueous suspension or infected cadavers.  相似文献   

2.
The susceptibility of codling moth diapausing larvae to three entomopathogenic nematode species was assessed in the laboratory using a bioassay system that employed cocooned larvae within cardboard strips. The LC50values forSteinernema carpocapsae, S. riobrave,andHeterorhabditis bacteriophorawere 4.7, 4.8, and 6.0 infective juveniles/cm2, respectively. When a discriminating concentration of 10 infective juveniles/cm2of each of the three nematode species was evaluated at 15, 20, 25, and 30°C,S. carpocapsaewas the most effective nematode with mortalities ranging from 66 to 90%. Mortalities produced byS. riobraveandH. bacteriophoraat the four temperatures were 2–94 and 25–69%, respectively. Studies were also conducted to test infectivity at 10, 35, and 40°C. No mortality was produced by any of the nematode species at 10°C.S. riobravewas the most infective nematode at 35°C producing 68% mortality which was more than twice that observed forS. carpocapsaeorH. bacteriophora.Codling moth larvae treated with 10 infective juveniles/cm2ofS. carpocapsaeand kept in 95+% RH at 25°C for 0–24 h followed by incubation at 25–35% RH indicated that more than 3 h in high humidity was needed to attain 50% mortality. Trials ofS. carpocapsae, S. riobrave,andH. bacteriophoraat 50 infective juveniles/cm2against cocooned larvae on pear and apple logs resulted in reductions of codling moth adult emergence of 83, 31, and 43%, respectively, relative to control emergence. Trials of the three entomopathogenic nematodes at 50 infective juveniles/cm2against cocooned larvae in leaf litter resulted in 99 (S. carpocapsae), 80 (S. riobrave), and 83% (H. bacteriophora) mortality, respectively. Our results indicate good potential of entomopathogenic nematodes, especiallyS. carpocapsae,for codling moth control under a variety of environmental conditions.  相似文献   

3.
The survival and infectivity of the infective juveniles of two species of entomopathogenic nematodes, Steinernema feltiae (Rhabditida: Steinernematidae) Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae), were determined after exposure for 72 h to two concentrations of the herbicides glyphosate and MCPA, as well as to the combination of the two herbicides (glyphosate + MCPA). For all herbicide treatments, concentrations and exposure times, S. feltiae was more tolerant to the herbicides than H. bacteriophora. The exposure of entomopathogenic nematodes to glyphosate + MCPA caused significantly higher mortality (26.33–57.33%) than glyphosate (0.67–15%) or MCPA (2.33–19%) alone. These results confirm the synergistic effect of the glyphosate + MCPA combination on the mortality in these nematodes. Nematode infectivity of Galleria mellonella larvae in response to the herbicides presence was evaluated in Petri dish assays containing sterile sand. Nematode infectivity was not significantly reduced by exposure to herbicides in S. feltiae but H. bacteriophora was less tolerant. Synergistic effect was obtained in the nematode mortality test but no synergistic effect was observed in the nematode infectivity assay. Our results suggest that possible synergistic effects of agrochemicals on survival of nematodes should be tested before mixing with entomopathogenic nematodes.  相似文献   

4.
Entomopathogenic nematodes are used for biological control of insect pests. A method for improved cryopreservation of infective juvenile stage nematodes has been developed using Steinernema carpocapsae and Heterorhabditis bacteriophora. Optimum survival for both species was achieved with 12,000 infective juveniles/ml in glycerol and 7,500/ml in Ringer''s solution. For S. carpocapsae, maximum survival also was observed with 60,000 infective juveniles/ml in glycerol and 25,000/ml in Ringer''s solution. These concentrations resulted in 100% post-cryopreservation survival of S. carpocapsae and 100% retention of original virulence to Galleria mellonella larvae. This is the first report of achieving 100% survival of an entomopathogenic nematode after preservation in liquid nitrogen. Maximum survival of H. bacteriophora following cryopreservation was 87%.  相似文献   

5.
Entomopathogenic nematodes (EPNs) from the families Steinernematidae and Hererorhabditidae are considered excellent biological control agents against many insects that damage the roots of crops. In a regional survey, native EPNs were isolated, and laboratory and greenhouse experiments were conducted to determine the infectivity of EPNs against the cucurbit fly, Dacus ciliatus Loew (Diptera: Tephritidae). Preliminary experiments showed high virulence by a native strain of Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) and a commercial strain of Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae). These two strains were employed for further analysis while another native species, Steinernema feltiae, was excluded due to low virulence. In laboratory experiments, larvae and adult flies were susceptible to nematode infection, but both nematode species induced low mortality on pupae. S. carpocapsae had a significantly lower LC50 value against larvae than H. bacteriophora in filter paper assays. Both species of EPNs were effective against adult flies but S. carpocapsae caused higher adult mortality. When EPN species were applied to naturally infested fruit (150 and 300 IJs/cm2), the mortality rates of D. ciliatus larvae were 28% for S. carpocapsae and 12% for H. bacteriophora. Both EPN strains successfully reproduced and emerged from larvae of D. ciliates. In a greenhouse experiment, H. bacteriophora and S. carpocapsae had similar effects on fly larvae. Higher rates of larval mortality were observed in sandy loam and sand soils than in clay loam. The efficacy of S. carpocapsae and H. bacteriophora was higher at 25 and 30°C than at 19°C. The results indicated that S. carpocapsae had the best potential as a biocontrol agent of D. ciliatus, based on its higher virulence and better ability to locate the fly larvae within infected fruits.  相似文献   

6.
Infectivity of six entomopathogenic nematode (EPNs) species against Bactrocera oleae was compared. Similar infection levels were observed when third-instar larvae were exposed to infective juveniles (IJs) on a sand-potting soil substrate. When IJs were sprayed over naturally infested fallen olives, many larvae died within treated olives as well as in the soil; Steinernema feltiae caused the highest overall mortality of 67.9%. In addition, three laboratory experiments were conducted to optimize a time period for S. feltiae field application. (1) Abundance of fly larvae inside fallen olives was estimated over the 2006–2007 season with the highest number of susceptible larvae (3 mm and larger) per 100 olives being observed during December, 2006. (2) S. feltiae efficacy against fly larvae dropped to the soil post-IJ-application was determined. B. oleae added to the substrate before and after nematode application were infected at similar levels. (3) Effect of three temperature regimes (min–max: 10–27, 6–18, and 3–12 °C) corresponding to October through December in Davis, California on S. feltiae survival and infectivity was determined. After 8 weeks, the IJs at the 3–12 °C treatment showed the highest survival rate. However, the cold temperature significantly limited S. feltiae infectivity. Our results demonstrate that B. oleae mature larvae are susceptible to EPN infection both in the soil and within infested olives. Being the most effective species, S. feltiae may have the potential to suppress overwintering populations of B. oleae. We suggest that November is the optimal time for S. feltiae field application in Northern California.  相似文献   

7.
The efficacy of three entomopathogenic nematodes (Heterorhabditis spp.), from north western Himalaya, India was studied against the diamondback moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae), under laboratory conditions. The larvae were exposed to 10, 20, 30 and 40 infective juveniles (IJs) of each nematode species for different time periods and they were found to be susceptible to all the EPNs tested. However, the susceptibility of larvae to nematode infection varied according to the dosages of IJs and their exposure periods. The efficacy of these indigenous entomopathogenic nematodes was also evaluated against the commercially available entomopathogenic nematode H. indica. An indigenous isolate, H. bacteriophora (HRJ), along with the commercial isolate H. indica recorded 100.0% mortality of insect larvae in 96 h exposure time against third instar larvae of P. xylostella. However, it was noticed that with the advancement of larval stage its mortality rate reduces and vice versa with the exposure period. All the tested nematode species were also found to reproduce within the host and produced infective juveniles. In conclusion, the evidence obtained in this study suggests that all the three indigenous EPN species are virulent enough to produce 100% mortality of larvae of P. xylostella. These EPN species thus have potential for the management of P. xylostella under integrated management practices.  相似文献   

8.
The effects of soil depth, soil type and temperature on the activity of the nematode Steinernema carpocapsae (Filipjev) were examined using larvae of the West Indian fruit fly, Anastrepha obliqua (Macquart). Bioassays involved applying infective juveniles (IJs) to the surface of sterilized sand in PVC tubes previously inoculated with fly larvae of two ages. The 50% lethal concentration (LC50) values estimated for 6-day-old larvae were 9, 20 and 102 IJs/cm2 in tubes containing 2, 5 and 8 cm depth of sand, respectively, whereas for 8-day-old larvae, LC50 values were 16, 40 and 157 IJs/cm2, respectively. The effect of soil texture on the activity of S. carpocapsae was tested by applying the corresponding LC50 concentrations of nematodes to sand, sand–clay and loamy–sand soils. For 6-day-old larvae, soil type had a highly significant effect on infection with the highest percentages of infection observed in the sand–clay mixture (60–82% depending on depth) compared to 45–64% infection in sand and 23–30% infection in loamy–sand soil. A very similar pattern was observed in 8-day-old larvae except that infection rates were significantly lower than in younger larvae. There was a significant interaction between soil type and soil depth. The effect of three temperatures (19, 25 and 30°C) on infection was examined in sand–clay soil. The infectivity of S. carpocapsae was affected by temperature and soil depth and by the interaction of these two factors. Response surface analysis applied to second order multiple linear regression models indicated that the optimal temperature for infection of larvae of both ages was ~26°C, at a depth of 7.9 cm for 6-day-old larvae and <2 cm for 8-day-old larvae, resulting in a predicted 91.4% infection of 6-day-old larvae and 61.2% infection of 8-day-old larvae. These results suggest that S. carpocapsae may have the potential to control fruit fly pests in tropical ecosystems with warm temperatures and high soil moisture levels, although this assertion requires field testing.  相似文献   

9.
In laboratory studies, we demonstrated that five native entomopathogenic nematode species/isolates caused 100% mortality of Spodoptera cilium larvae, a soil surface-feeding pest of turfgrass. At 25 infective juveniles/cm2 applied to sod, two selected Turkish species, Steinernema carpocapsae and Heterorhabditis bacteriophora (Sarigerme isolate), averaged 77% and 29% larval mortality, respectively.  相似文献   

10.
Three native Egyptian nematode isolates; Heterorhabditis taysearae and Heterorhabditis sp. S1 (Heterorhabditidae) and Steinernema carpocapsae S2 (Steinernematidae) as well as H. bacteriophora Hp88 as an imported species, were used in the present work to evaluate their activities against larvae and adults of the melon ladybird, Epilachna chrysomelina. The target pest was found to be susceptible to all tested entomopathogenic nematodes under laboratory conditions of 30±5°C.

In the greenhouse, a single spray of nematode suspension (1000 infective juveniles per ml) of each of H. taysearae, H. bacteriophora Hp88 and Steinernema carpocapsae S2 on squash seedlings was enough to give a reasonable mortality of 4th larval instar E. chrysomelina, reaching 65.2, 44.0 and 84.0%, respectively, one week after application. This gives evidence that the Egyptian nematode isolates could tolerate high temperature and could be recommended for application in the control programmes of E. chrysomelina larvae in cucurbit fields.  相似文献   

11.
The biological traits of the entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, against the larvae of the leopard moth, Zeuzera pyrina were evaluated in the laboratory. The traits included pathogenicity, penetration potential as well as foraging behaviour. Plate assays were performed using a range of EPN concentrations (5, 10, 20, 50 and 100 infective juveniles (IJs) per larva). The LC50 values for S. carpocapsae and H. bacteriophora were 6.4 and 8.4 IJs larva?1 after 72 h. Both EPN species caused high mortality in branch experiments. Significantly higher mortality rates occurred in the larger larvae after exposure to S. carpocapsae. Both EPN species successfully penetrated the Z. pyrina larvae as well as larvae of Galleria mellonella L. (Lepidoptera: Galleridae).The proportional response of H. bacteriophora to host-associated cues was strongly higher than S. carpocapsae in Petri dishes containing agar 1, 12 and 24 h after EPN application. These results highlight the efficiency of EPNs for the control of Z. pyrina larvae. However, due to the cryptic habitat of Z. pyrina larvae in their galleries in the trees, field trails need to be conducted to further evaluate this potential.  相似文献   

12.
Predation of the entomopathogenic nematode, Steinernema feltiae (Rhabditida: Steinernematidae), by Sancassania sp. (Acari: Acaridae) isolated from field-collected scarab larvae was examined under laboratory conditions. Adult female mites consumed more than 80% of the infective juvenile (IJ) stage of S. feltiae within 24 h. When S. feltiae IJs were exposed to the mites for 24 h and then exposed to Galleria mellonella (Lepidoptera: Pyralidae) larvae, the number of nematodes penetrating into the larvae was significantly lower compared to S. feltiae IJs that were not exposed to mites (control). Soil type significantly affected the predation rate of IJs by the mites. Mites preyed more on nematodes in sandy soil than in loamy soil. We also observed that the mites consumed more S. feltiae IJs than Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). No phoretic relationship was observed between mites and nematodes and the nematodes did not infect the mites.  相似文献   

13.
The susceptibility of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) to native and commercial strains of entomopathogenic nematodes (EPNs) was studied under laboratory conditions. Native strains of EPNs were collected from northeastern Iran and characterised as Steinernema feltiae and Heterorhabditis bacteriophora (FUM 7) using classic methods as well as analysis of internal transcribed spacer (ITS) and D2/D3 sequences of 28S genes. Plate assays were performed to evaluate the efficiency of five EPN strains belonging to four species including Steinernema carpocapsae (commercial strain), S. feltiae, Steinernem glaseri and H. bacteriophora (FUM 7 and commercial strains). This initial assessment with 0, 75, 150, 250, 375 and 500 IJs/ml concentrations showed that S. carpocapsae and H. bacteriophora caused the highest mortality in both larval and prepupal stages of P. operculella, PTM. Thereafter, these three strains (i.e. S. carpocapsae, H. bacteriophora FUM 7 and the commercial strains) were selected for complementary assays to determine the effects of soil type (loamy, loamy–sandy and sandy) on the virulence of EPNs against the second (L2) and fourth instar (L4) larvae as well as prepupa. A soil column assay was conducted using 500 and 2000 IJs in 2-ml distilled water. Mortality in the L2 larvae was not affected by the EPN strain or soil type, while there was a significant interactive effect of nematode strains and soil type on larval mortality. The results also showed that EPN strains have higher efficiency in lighter soils and caused higher mortality on early larvae than that in loamy soil. In L4 larvae, mortality of PTM was significantly influenced by nematode strain and applied concentrations of infective juveniles. The larval mortality induced by S. carpocapsae was higher than those caused either by a commercial or the FUM 7 strain of H. bacteriophora. Prepupa were the most susceptible stage.  相似文献   

14.
To investigate nematode establishment and persistence, dauer juveniles (DJs) of Heterorhabditis bacteriophora were applied at 50 cm-2 in different crops in June and July with conventional spraying equipment and 420 l water ha-1. Application hardly had any effects on survival and infectivity. The number of DJs reaching the soil was assessed and the establishment and persistence recorded by baiting soil samples with larvae of the wax moth Galleria mellonella. The better the plant canopy was developed the fewer DJs reached the soil during application. Whereas in pasture 77% and in potatoes 78% of the applied nematodes reached the soil, in wheat and peas little less than 50%, in oil-seed rape only 5% and in lupine 6% were recorded. Between 50 and 60% of the soil samples contained H. bacteriophora a month after application with the exception of wheat (>90%) and potatoes (<5%) indicating that the number of nematodes reaching the soil during application had no influence on their establishment in the soil. Probably DJs can survive in the plant canopy and reach the soil later after application. The percentage of nematode-positive soil samples dropped considerably after tillage. In potatoes no nematodes were recovered after two months, which probably was also due to the intensive movement of the soil. Although nematodes are susceptible to freezing, temperatures below 0°C during the winter did not extinguish the H. bacteriophora population. In field crops EPN usually persisted not much longer than one year. The longest persistence of H. bacteriophora was detected 23 months after release in beans followed in rotation by wheat with red clover as cover crop. In this field larvae of the pea weevil Sitona lineatus (Coleoptera: Curculionidae) were detected in soil samples and found infected with the released nematode population. In the laboratory the field soils were tested for persistence of H. bacteriophora at 8°C and a half-life of 24.8 days was recorded in the absence of host insects and plants. Thus long-term persistence in the field was a result of recycling in host insects, which could not be detected in other crops than beans and clover. As H. bacteriophora seems to be restricted in its host potential, this species disappears after release once the host population is not available anymore.  相似文献   

15.
Queensland fruit fly, Bactrocera tryoni (Froggatt), is the economically most significant Australian tephritid pest species with a large invasion potential, yet relatively little work on its biological control has been undertaken. Entomopathogenic nematodes (EPNs) are of potential interest for control of this fruit fly species as it pupates in the soil. Specifically, the pre-pupal stage of B. tryoni may present a unique window for EPN application, as fully developed larvae drop from infested fruit to the soil for pupation. For the first time, we tested the capacity of three EPN species with different foraging strategies, Steinernema feltiae, Steinernema carpocapsae and Heterorhabditis bacteriophora, to cause larval and pupal mortality in B. tryoni across a range of EPN concentrations (50, 100, 200, 500 and 1000 infective juveniles IJs cm-2), substrate moisture (10, 15, 20 and 25% w/v) and temperatures (15, 20, 25 and 30 °C). We found that all EPN species tested caused environment and density dependent mortality in the third larval instar while pupae were not affected. Steinernema feltiae caused high mortality across different IJ concentrations and over a wider moisture and temperature range than the other two EPN species. High mortality caused by S. carpocapsae and H. bacteriophora was more limited to high IJ concentrations and a narrower moisture and temperature range. Our findings highlight the potential of EPNs for the control of B. tryoni and warrant further laboratory and field experiments to evaluate their efficacy under the wide environmental conditions that B. tryoni can occur in.  相似文献   

16.
The efficacy of soil treatments of three native entomopathogenic nematodes (Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora) against Tuta absoluta larvae, pupae and adults was determined under laboratory conditions. The effect of three insecticides commonly used against T. absoluta, in the survival, infectivity and reproduction of these nematode strains was also evaluated. When dropped into soil to pupate, soil application of nematodes resulted in a high mortality of larvae: 100, 52.3 and 96.7 % efficacy for S. carpocapsae, S. feltiae and H. bacteriophora respectively. No mortality of pupae was observed and mortality of adults emerging from soil was 79.1 % for S. carpocapsae and 0.5 % for S. feltiae. The insecticides tested had a negligible effect on nematode survival, infectivity and reproduction. No sublethal effects were observed. Infective juveniles that survived to insecticide exposition were able to infect Galleria larvae with no significant differences from the control. The Galleria larvae affected by the three insecticides tested served as suitable hosts for the infection and reproduction of the nematodes. These results suggest that larvae of T. absoluta, falling from leaves following insecticide application, could be suitable hosts for nematodes, thereby increasing their concentration and persistence in the soil.  相似文献   

17.
The red palm weevil (RPW), Rhynchophorus ferrugineus, is a serious pest of date palms. Its larvae bore deep into the trunk disrupt the vascular tissues and kill the infested trees. Behavioral features of entomopathogenic nematodes (EPNs), reflected by attraction and distribution patterns, are fundamental aspect in determining their parasitic ability and potential management of RPW. We studied the attraction behavior of the EPNs Steinernema carpocapsae and Heterorhabditis bacteriophora to the RPW under simulated natural conditions in tubes to evaluate their infective potential. In all experiments, a certain proportion of infective juveniles (IJs) (16–20%) stayed near the inoculated site and a major proportion (38–48%) was attracted to the host end. Both H. bacteriophora and S. carpocapsae were efficient crawlers, climbing up and descending when locating their insect host. They were efficiently attracted to the various larval sizes and stages of the RPW life cycle. Host localization by ascending movement was more prominent in S. carpocapsae than in H. bacteriophora. In general, H. bacteriophora is classified as a cruiser forager and S. carpocapsae as an ambusher. However, in this study, we discovered a higher percentage of cruiser foragers among S. carpocapsae IJs. They dispersed much faster and their cruising behavior was prominent characteristic in controlling the cryptic RPW concealed in organic habitats.  相似文献   

18.
The calculation of most probable numbers (mpn) was used for the estimation of numbers of infective entomopathogenic nematodes in soil. The mpn concept was first introduced in bacteriology as a means of estimating numbers of organisms in a substrate without a direct count, in cases where direct enumeration could not be applied. In the work reported here, soil samples infested with infective juveniles (IJs) of Heterorhabditis megidis (isolate HF85) were diluted with uninfested soil and the diluted soils were baited with mealworm larvae (Tenebrio molitor). The mpn of infective units of IJs in the undiluted soil was calculated. The mpn calculation was found to be applicable to entomopathogenic nematodes in soil under particular conditions. It could be successfully applied to data for the response of soil units but not to the data based on the response of individual insects, as the latter did not confirm to a Poisson series. The calculated mpn represented between 2.9 and 7.1% of the initial inoculum of IJs. It was suggested that IJs might act as a group in infecting an insect host. Using the data for Tenebrio mortality on parasitisation, the mpn based on quantal response of the mealworms would therefore not give the true density of IJs in the soil sample but the effective density, or the quantity of infective units. Although the biological significance of the infective unit needs further clarification, mpn was found to be a useful parameter for use in comparative experiments.  相似文献   

19.
Infective juveniles of the entomopathogenic nematode Steinernema carpocapsae show a low level of locomotory activity that is presumed to limit their usefulness as biological insecticides. A 30 μg ml-1 solution of the carbamate pesticide oxamyl reduced the proportion of nonmobile nematodes by nearly two thirds to 35%, while stimulating a 7.5-fold increase in sinusoidal movement. This increase in activity did not result in a corresponding increase in host-finding. Oxamyl treatment did not enhance infective juvenile pathogenicity to Galleria mellonella larvae. At higher concentrations, oxamyl caused aberrant nematode movement and partial paralysis. Heterorhabditis bacteriophora infective juveniles maintain a high level of locomotory activity. Treatment with 30 μg ml-1 oxamyl increased the proportion of sinusoidal over nonsinusoidal movements, but infective juvenile host-finding and pathogenicity were significantly reduced. Higher rates impaired movement and induced complete paralysis. We conclude that oxamyl is incompatible with S. carpocapsae and H. bacteriophora. The concept of chemically activating infective juveniles to increased locomotory activity and thereby achieving enhanced efficacy is inconsistent with our results.  相似文献   

20.
Single infective juveniles of Heterorhabditis bacteriophora, H. megidis (Nematoda: Heterorhabditidae), Steinernema arenarium, S. carpocapsae and S. feltiae (Nematoda: Steinernematidae) were used to infect single Galleria mellonella (Lepidoptera: Pyralidae) larvae. Four parameters of entomopathogenic nematodes pathogenicity were assessed: the mortality of insects, infectivity of nematodes, number of nematodes established per single G. mellonella, and degree of infective juveniles colonization (percent of infective juveniles which intestine was colonized by symbiotic bacteria). The accuracy, repeatability, and versatility for different species of EPNs in bioassay arenas were compared. Our modifications of the original methods yielded ~ 50% higher efficiency of infective juveniles in cell culture plates and > 20% higher efficiency in centrifuge test tubes. The efficiency of nematodes in cell culture plates (39–77%) was relatively low, especially in the case of Heterorhabditis spp. In the bioassay arena, infective juveniles migrated between cells. The results of our studies indicate that the pathogenicity of EPNs should be assessed in centrifuge test tubes. In these arenas, the infectivity of single IJs was ~ 90% for Heterorhabditis spp. and ~ 95% for Steinernema spp. The degree of colonization of the EPN isolates by symbiotic bacteria was in the range of 96–98%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号