首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
The characteristics of receptors for platelet-activating factor (PAF) on rabbit neutrophils are investigated in this report. The presence of PAF-specific binding to rabbit neutrophils was confirmed using radiolabeled ligand binding assays and a rabbit peritoneal neutrophil membrane preparation. Binding of PAF to the neutrophil membranes was reversible and reached equilibrium within 30 min. Scatchard analysis of PAF-specific binding to the rabbit neutrophil membranes revealed a dissociation constant (Kd) for PAF of 0.41 +/- 0.045 nM and a Bmax of 0.32 +/- 0.11 pmol of PAF receptor/mg of protein. The order of potencies of PAF receptor antagonists to inhibit the binding of 3H-PAF to rabbit peritoneal neutrophil membranes was determined. For the competition assays, 100 micrograms of neutrophil or platelet membrane protein, 0.18 nM 3H-PAF, and varying amounts of PAF antagonist were incubated at room temperature for 1 hr. PAF receptor antagonists tested were ONO-6240, brotizolam, kadsurenone, WEB-2086, L-652-731, BN-52021, CV-3988, triazolam, alprazolam, and verapamil. The orders of potencies of these PAF receptor antagonists were similar for inhibition of 3H-PAF binding to rabbit peritoneal neutrophil and platelet membranes (correlation coefficient, r = 0.97). PAF had a significantly higher affinity for rabbit neutrophil membranes (Kd = 0.41 +/- 0.045 nM), as compared with its affinity for rabbit platelet membranes (Kd = 0.87 +/- 0.092 nM). In addition, sodium was found to inhibit 3H-PAF specific binding to rabbit platelet membranes and not to affect 3H-PAF binding to neutrophil membranes. These data indicate that, although PAF receptors on rabbit platelets and neutrophils exhibit similar orders of potencies of PAF receptor antagonists to inhibit the binding of 3H-PAF, the disparity in Kd of PAF for the receptors and the effect of NaCl on the binding of 3H-PAF reveal subtle differences between the cell types.  相似文献   

2.
Previously reported methods for quantifying platelet-activating factor (PAF) binding to rabbit platelet membranes were modified for studies of PAF binding to human platelet membranes. The membranes were prepared by the "glycerol lysis" method and PAF binding was quantified by using polyethylene glycol precipitation to recover membrane-bound PAF. Optimal PAF binding required buffers containing 3 to 10 mm KCl and either 5 to 10 mM MgCl2 or 5 to 10 mM CaCl2. NaCl was not as effective as KCl and concentrations of NaCl greater than 3 mM strongly inhibited PAF binding. Maximal binding occurred after incubation for 60 min at 0 degree C and was reversed by the addition of excess unlabeled PAF. PAF binding was saturable. Scatchard analysis of PAF binding to 50 micrograms of membrane protein revealed 10.3 +/- 1.7 x 10(11) receptors per milligram of membrane protein and the receptors had a Kd of 7.6 +/- 1.9 nM. The calculated receptor number, binding affinity, and specificity of binding are similar to those previously calculated for PAF binding to intact human platelets, suggesting that the membrane binding site for PAF is the PAF receptor.  相似文献   

3.
This study was designed to solubilize, characterize and begin to purify the thiazide-sensitive Na/Cl transporter from mammalian kidney. Metolazone, a thiazide-like diuretic drug, binds to receptors in rat renal cortex closely related to the thiazide-sensitive Na/Cl transport pathway of the renal distal tubule. In the current study, [3H]metolazone bound to receptors in rabbit renal cortical microsomes. The portion of [3H]metolazone binding that was inhibited by hydrochlorothiazide reflected binding to a high-affinity class of receptor. The affinity (Kd 2.0 +/- 0.1 nM) and number (Bmax = 0.9 +/- 0.4 pmol/mg protein) of high-affinity receptors in rabbit renal cortical membranes were similar to values reported previously for rat. When proximal and distal tubule fragments were separated by Percoll gradient centrifugation, receptors were restricted to the fraction that contained distal tubules. When compared with cortical homogenates, receptor density was enriched 12-fold by magnesium precipitation and differential centrifugation. The zwitterionic detergent CHAPS solubilized 25-35% of the receptors (at 6 mM). Chloride inhibited and Na stimulated binding of [3H]metolazone to solubilized high-affinity receptors. The receptors could be purified significantly by hydroxyapatite chromatography and size exclusion high performance liquid chromatography (HPLC). The combination of magnesium precipitation and differential centrifugation, hydroxyapatite chromatography, and size exclusion HPLC resulted in a 213-fold enrichment of receptors, compared to renal cortical homogenate. The current results indicate that thiazide receptors from rabbit kidney share characteristics with receptors from rat, and that rabbit receptors can be solubilized in CHAPS and purified significantly by hydroxyapatite chromatography and size exclusion HPLC.  相似文献   

4.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

5.
High affinity receptors have been demonstrated for the potent phospholipid autacoid, platelet-activating factor (PAF C18:0; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) in a variety of tissues, including the endometrium. Because of the relative instability of PAF and our previous demonstration that lyso-PAF (1-O-alkyl-2-lyso-sn-glycero-3-phosphorylcholine), the major metabolite of PAF, displaced [3H]PAF from endometrial PAF receptor sites, we have examined the ability of bovine serum albumin (BSA) to prevent degradation of PAF and have characterized PAF and lyso-PAF binding sites in purified rabbit endometrial membranes isolated on Day 6 of pregnancy. In buffer containing the phospholipase A2 inhibitors, quinacrine (10 microM) and dibromoacetophenone (2 microM), and 0.25% BSA, 87.4 +/- 3.2% of added [3H]PAF C18:0 remained intact after incubation at 25 degrees C for 150 min. The metabolic products, lyso-PAF and 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylcholine (alkylacyl-GPC), only amounted to 5.2 +/- 3.2 and 3.3 +/- 1.1, respectively. At the same concentration, rabbit serum albumin (RSA) also significantly protected [3H]PAF C18:0 from metabolism, but bovine gamma globulin (BGG) was ineffective. The presence of 0.25% BSA, however, did not protect [3H]lyso-PAF C18:0 from extensive catabolism: the major product formed was [3H]alkylacyl-GPC. Insignificant amounts of [3H]PAF were formed. Under the same conditions (25 degrees C, 150 min) in the presence of 0.25% BSA, saturation analysis revealed the presence of two types of PAF C18:0 receptors in the endometrial membranes. Type 1 sites had a Kd of 0.42 +/- 0.03 nM (mean +/- SD; n = 3) and binding capacity of 0.11 +/- 0.01 pmol/mg protein. Type 2 receptor sites had a Kd of 5.96 +/- 0.35 nM and a binding capacity of 1.59 +/- 0.22 pmol/mg protein. Thus, in the presence of BSA, the binding capacities of the two classes of receptors were markedly reduced compared to values generated previously in its absence. The Kd of the Type 1 sites was not significantly changed by the presence of BSA. A single class of saturable high-affinity binding sites was demonstrable for lyso-PAF C18:0: Kds ranged from 0.76 +/- 0.58 to 11.1 +/- 0.62 nM, depending on which method of analysis was used (Eadie-Hofstee, Scatchard-Rosenthal, or the Lundon nonlinear method). The binding capacities were equally varied, ranging from 0.15 +/- 0.08 to 15.17 +/- 4.95 pmol/mg protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Due to multiple molecular species of platelet-activating factor (PAF) and the existence of high affinity binding sites in a variety of cells and tissues, possible existence of PAF receptor subtypes has been suggested. This report shows differences between specific PAF receptors in human leukocytes and platelets. Human polymorphonuclear leukocyte membranes showed high affinity binding sites for PAF with an equilibrium dissociation constant (KD) of 4.4 (+/- 0.3) x 10(-10) M. We compared the relative potencies of several PAF agonists and receptor antagonists between human platelet and human leukocyte membranes. One receptor antagonist (Ono-6240) was found to be 6-10 times less potent in inhibiting the specific [3H]PAF receptor binding, PAF-induced GTPase activity, as well as the PAF-induced aggregation in human leukocytes than in human platelets. Mg2+, Ca2+, and K+ ions potentiated the specific [3H]PAF binding in both systems. Na+ and Li+ ions inhibited the specific [3H]PAF binding to human platelets but showed no effects in human leukocytes. K+ ions decreased the Mg2+-potentiated [3H]PAF binding in human leukocytes but showed no effects in human platelets. PAF stimulates the hydrolysis of [gamma-32P] GTP with an ED50 of about 1 nM, whereas the biological inactive enantiomer shows no activity even at 10 microM in both human platelets and human leukocytes. The PAF-stimulated GTPase in human leukocytes can be abolished by the pretreatment of membranes with pertussis toxin and cholera toxin. However, the PAF-stimulated activity of GTPase in human platelets is insensitive to pertussis toxin and cholera toxin. These results suggest that there exists a second type of PAF receptor in human polymorphonuclear leukocytes, which is structurally different from the one characterized in human platelets, and that the guanine nucleotide-binding protein coupled to PAF receptors in human leukocytes is also different from the one in human platelets.  相似文献   

7.
S B Hwang  C S Lee  M J Cheah  T Y Shen 《Biochemistry》1983,22(20):4756-4763
By using tritiated 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (3H-PAF), we have directly identified its specific binding sites on rabbit platelet plasma membranes. The equilibrium dissociation constant for 3H-PAF is 1.36 (+/- 0.05) X 10(-9) M at 0 degrees C. The number of binding sites is 1.61 (+/- 0.34) X 10(12)/mg of membrane, which corresponds to approximately 150-300 receptors/platelet (depending on membrane vesicle orientation). Binding of 3H-PAF to rabbit platelet plasma membrane is rapid (t1/2 less than 5 min at 0 degrees C) and reversible. For a series of PAF analogues, their affinity for the receptor sites parallels with their relative potency to induce platelet aggregation. PAF can cause contraction of smooth muscle of heart, parenchymal strip, trachea, and ileum. Specific PAF receptor binding was demonstrated with purified plasma membrane from several smooth muscles and from polymorphonuclear leukocytes but not from presumably PAF nonresponsive cells such as erythrocytes and alveolar macrophages. It is likely that the interaction of PAF with these binding sites initiates the specific responses of platelets, polymorphonuclear leukocytes, and smooth muscles.  相似文献   

8.
The protective effect exerted by BN 52021 a specific PAF-receptor antagonist in experimentally induced ocular inflammatory disorders led us to investigate the possible presence of specific receptors for PAF in rabbit iris and ciliary body. Two classes of PAF binding sites were found in isolated iris and ciliary process of pigmented rabbit eyes: a high affinity site Kd1 congruent to 4.9 +/- 0.47 nM, Bmax1 congruent to 3.17 +/- 0.50 pmoles/mg protein, a low affinity sites Kd2 congruent to 11.6 +/- 0.33 nM, Bmax2 congruent to 12.46 +/- 2.3 pmoles/mg protein for iris. The specific binding was not affected by lyso-PAF the biologically inactive precursor and metabolite of PAF, up to 10(-6) M; inhibition by unlabelled PAF demonstrated a biphasic curve partially antagonized by BN 52021. The present results demonstrate the presence of specific binding sites for PAF in rabbit eyes which could mediate the action of this mediator in eye inflammatory processes and explain the protective effect observed with BN 52021.  相似文献   

9.
Monoclonal anti-idiotypic antibodies (3C3F3E4 and 10D3F8H7) that interact with platelet activating factor (PAF) receptors were generated using an auto-anti-idiotypic approach by immunizing mice with an aldehydic analog of PAF coupled to bovine thyroglobulin. The resulting hybridomas were screened for anti-idiotypic antibody (anti-anti-PAF) with F(ab')2 fragments of affinity-purified polyclonal rabbit anti-PAF antibody. These antibodies displayed internal image properties of PAF and were considered as Ab2 beta according to the following criteria: (a) they bound to F(ab')2 fragments of the affinity-purified rabbit polyclonal anti-PAF antibody that had high affinity for PAF; (b) they inhibited [3H]PAF binding to rabbit polyclonal anti-PAF antibody and its F(ab')2 fragment in a concentration-dependent manner; (c) they displaced [3H]PAF from the anti-PAF antibody/[3H]PAF complex specifically; (d) they inhibited [3H]PAF binding to PAF receptors on rabbit platelet membranes dose dependently; (e) they displaced [3H]PAF from the [3H]PAF/PAF receptor complex specifically; and (f) they stimulated rabbit platelets to aggregate, and this aggregation could be inhibited or totally blocked by specific PAF receptor antagonists WEB 2086 and SRI 63-441. All of the above are consistent with the first successful production of monoclonal antibodies that mimic PAF and interact specifically with the PAF binding domain of PAF receptors on rabbit platelet membranes.  相似文献   

10.
The binding of 3H-labeled 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) to isolated rat liver plasma membranes and its inhibition by PAF agonists and receptor antagonists was demonstrated. The specific binding was readily saturable with a high affinity. The equilibrium dissociation constant (KD) value was 0.51 (+/- 0.14) nM and the maximal number of binding sites (Bmax) was estimated to be 141 (+/- 18) fmol/mg protein. The binding site was PAF specific-biologically inactive enantiomer was practically inactive. Two PAF-like receptor antagonists, Ono-6240 and CV-3988, and two PAF-unlike receptor antagonists, L-652,731 and kadsurenone, also displaced the binding of [3H]PAF to rat liver plasma membranes but their relative potencies in this system differed from those found in other receptor systems. Mg2+ potentiated [3H]PAF binding but inhibited it at concentrations higher than 10 mM. Both Na+ and K+ inhibited the Mg2+-potentiated binding, an ionic effect which was different from that found in rabbit platelets. These results suggest that rat livers contain PAF-specific receptors, and the receptors in rat livers are different from those found in other receptor systems.  相似文献   

11.
B Votta  S Mong 《Life sciences》1990,46(4):309-313
Binding of the radiolabeled platelet-activating-factor (PAF) receptor antagonist RP52770, [( 3H]-N-(3-chlorophenyl)-3-(3-pyridinyl)-1H, 3H-pyrrolo- [1,2-c]thiazole-7-carboxamide) to receptors in human lung membranes was time- dependent, protein-dependent, reversible and saturable. The dissociation constant and maximal binding density were 14 +/- 2 nM and 2.1 +/- 0.6 pmol/mg protein, respectively. [3H]-RP52770 binding to the PAF receptor was competitively displaced by PAF and receptor antagonists. The rank order of the binding affinities were PAF greater than RP52770 (+) greater than RP52770 (-) greater than CV3988, equivalent to the PAF receptor specificities determined from functional studies. Binding of PAF to [3H]-RP52770 labeled receptors was regulated by sodium, guanylylimido- diphosphate (GppNHp) and divalent cations. In the presence of EDTA, Na+ and GppNHp, in combination, binding of PAF to the receptor was maximally shifted to the right. These results clearly demonstrate that cations and guanine nucleotide can regulate the affinity states of the PAF receptor in human lung membranes.  相似文献   

12.
Specific binding of 3H-labeled platelet-activating factor (PAF) to rabbit platelet membranes was found to be regulated by monovalent and divalent cations and GTP. At 0 degrees C, inhibition of [3H]PAF binding by sodium is specific, with an ED50 of 6 mM, while Li+ is 25-fold less effective. On the contrary, K+, Cs+, and Rb+ enhance the binding. The divalent cations, Mg2+, Ca2+, and Mn2+ enhance the specific binding 8-10-fold. From both Scatchard and Klotz analyses, the inhibitory effect of Na+ is apparently due to an increase in the equilibrium dissociation constant (KD) of PAF binding to its receptors. However, the Mg2+-induced enhancement of the PAF specific binding may be attributed to an increased affinity of the receptor and an increased availability of the receptor sites. In the presence of Na+, PAF receptor affinity decreased with increasing temperature with a 100-fold sharp discontinuous decrease in receptor affinity at 24 degrees C. In contrast, the Mg2+-induced increase is independent of temperature suggesting that the Mg2+ regulatory site is different from Na+ regulatory site. [3H]PAF binding is also specifically inhibited by GTP; other nucleotides have little effect. PAF also stimulates hydrolysis of [gamma-32P]GTP with an ED50 of 0.7 nM, whereas 3-O-hexadecyl-2-O-acetyl-sn-glyceryl-1-phosphorylcholine showed no activity even at 10 microM. Moreover, such stimulatory effect of PAF is dependent on Na+ and can be abolished by the PAF-specific receptor antagonist, kadsurenone, but not by an inactive analog, kadsurin B. These results suggest that the PAF receptor may be coupled with the adenylate cyclase system via an inhibitory guanine nucleotide regulatory protein.  相似文献   

13.
One of the earliest signs of endometrial preparation for blastocyst implantation is a localized increase in capillary permeability, an event that is essentially inflammatory in character and thought to be a prerequisite for subsequent decidual tissue formation. Platelet-activating factor (PAF), chemically identified as 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine, is a very potent vasoactive compound that recently has been implicated in the implantation process. In the present study, PAF binding sites are characterized in the rabbit uterus. A specific, reversible, saturable, and thermally labile binding of [3H]PAF to uterine membranes has been demonstrated, exhibiting multiple binding sites. The equilibrium dissociation constant (Kd) of the higher affinity binding site (type 1) was 3.6 +/- 0.4 nM (mean +/- SD) with a binding capacity (Bmax) of 3.4 +/- 1.6 pmol/mg protein. The second (lower affinity) binding site (type 2) had an apparent Kd of 114.6 +/- 13.5 nM and a Bmax of 164.3 +/- 17.6 pmol/mg membrane protein, under the conditions of maximal [3H]PAF binding, 25 degrees C, 150 min. Incubations at 4 degrees C for up to 3 h yielded only 30% of the Bmax observed at 25 degrees C. In crude and purified endometrial membrane preparations in which the PAF binding was predominantly located, the affinity of the binding for PAF was significantly higher than for the whole uterus, giving Kds of 1.5 +/- 0.8 and 0.8 +/- 0.5 nM; these latter values were not significantly different. However, the Bmax values of 3.9 +/- 0.9 pmol/mg protein and 376.8 +/- 163.3 fmol/mg protein for the two endometrial preparations, respectively, did differ significantly. Kinetic analysis at 25 degrees C resulted in a calculated Kd of 3.28 +/- 1.14 nM, which did not differ from the value for for the whole uterus at the same temperature, but was greater than for the endometrial preparations. Using 4 nM [3H]PAF to selectively label only the type 1 binding sites, the relative potencies of PAF and its antagonists in displacing [3H]PAF were lyso-PAF greater than CV3988 greater than PAF greater than U66985 greater than A02405 greater than BN52021 greater than U66982. The antagonists SRI 63,441 and L652,731 were ineffective in displacing [3H]PAF at up to 5000-fold molar excess of [3H]PAF. [3H]Lyso-PAF binding at 4 nM was displaceable by PAF. All cations tested, i.e. Ca2+, Mg2+, K+, Na+, and Li+, inhibited [3H]PAF binding. Serine hydrolase inhibitors, diisopropylfluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF), inhibited binding, but bacitracin, leupeptin, and antipain stabilized it.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The bombesin/gastrin-releasing peptide (GRP) receptor was solubilized from Swiss mouse 3T3 cell membranes in an active form and was purified about 90,000-fold to near homogeneity by a combination of wheat germ agglutinin-agarose and ligand affinity chromatography. The purified receptor displayed a single diffuse band with a Mr of 75,000-100,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After treatment of the receptor with N-glycanase, removing N-linked oligosaccharide moieties, the protein yielded a Mr = 38,000 band. These results agree with the Mr value estimated for the GRP receptor that was labeled on Swiss 3T3 cells by cross-linking to 125I-GRP1-27. GRP1-27 bound to the purified receptor with a Kd of 0.038 +/- 0.019 nM. By comparison, the soluble receptor in unfractionated extracts and intact membranes displayed a Kd for GRP1-27 of 0.036 +/- 0.003 nM and 0.13 +/- 0.04 nM, respectively. The relative potencies of a series of GRP analogs for the soluble receptor and intact membranes indicated that the extraction procedure did not significantly alter the receptor's ligand binding specificity. However coupling of the receptor to its guanyl nucleotide regulatory protein was not maintained in the soluble extract, and a G-protein did not co-purify with the receptor. Physiological concentrations of NaCl greatly inhibited the binding of some GRP analogs to the receptor, while the binding of other analogs was not affected. A domain on the GRP molecule involving Lys-13 or Arg-17 was identified which promoted binding to the GRP receptor under conditions of low ionic strength. These findings aided the development of an effective ligand affinity resin for the purification of the GRP receptor.  相似文献   

15.
Leukotriene B4 (LTB4) is a pro-inflammatory arachidonate metabolite. We have characterized the LTB4 receptors in sheep lung membranes and have assessed the contribution of the guanine-nucleotide-binding (G) protein in the regulation of receptor affinity states. Saturation isotherms have demonstrated a single class of LTB4 receptor with a Kd of 0.18 +/- 0.03 nM and a density (Bmax.) of 410 +/- 84 fmol/mg of protein in sheep lung membranes. The effect of the G-protein on receptor affinity was assessed in the presence of non-hydrolysable GTP analogues (e.g. GTP[S]) and in membranes following alkali treatment (pH 12.1) to remove the G-protein. Saturation isotherms produced either in the presence of GTP[S] (Kd.GTP[S] = 0.51 +/- 0.02 nM) or with alkali-treated membranes (Kd.alk. = 0.52 +/- 0.02 nM) demonstrated a 3-fold shift in receptor affinity for [3H]LTB4 binding. In competition experiments, the rank order of affinity of LTB4 analogues was LTB4 greater than 20-OH-LTB4 greater than trans-homo-LTB4 greater than 6-trans-LTB4 greater than 20-COOH-LTB4, using either untreated or alkali-treated membranes, both in the presence and absence of GTP[S]. These findings demonstrate that, in sheep lung membranes, there is only one class of LTB4 receptor. Removal of the G-protein or uncoupling of the receptor from the G-protein shifted the agonist-binding affinity of the receptor by 3-4-fold, without affecting the specificity of the LTB4 receptor in either the high- or the low-affinity state.  相似文献   

16.
Kadsurenone inhibits specifically and competitively the specific binding of 3H-labeled platelet-activating factor ([3H]PAF) to rabbit platelet membranes. Since the 5-propyl analog of kadsurenone (dihydrokadsurenone) retains roughly the same potency as kadsurenone, [3H]dihydrokadsurenone was therefore synthesized through tritiation of kadsurenone. Specific binding of [3H]dihydrokadsurenone in rabbit platelet membranes is saturable. Scatchard analysis of binding data reveals the presence of a single class of binding sites with an equilibrium dissociation constant (KD) of 16.81 ( +/- 0.57) nM. The total number (Bmax) of detectable binding sites is 2.27 ( +/- 0.09) pmol/mg protein. Both C16- and C18-PAF fully displace the specific binding of (3H]dihydrokadsurenone (5 nM) with an identical ED50 of 3.6 X 10(-9) M. Dihydrokadsurenone and kadsurenone also displace the specific binding with roughly the same potency (ED50 = 4.4 X 10(-8) M). Several other PAF analogs and PAF receptor antagonists tested show relative potencies roughly similar to those found in the [3H]PAF-specific binding assay. Other pharmacological agents with no PAF antagonistic activities did not inhibit the specific binding of [3H]dihydrokadsurenone. These results agree with our previous conclusion that kadsurenone is a specific and competitive receptor antagonist and strongly suggest that PAF and the PAF receptor antagonists tested may interact at a common binding site in the PAF receptor.  相似文献   

17.
Platelet-activating factor (PAF) binding and metabolism by eight murine and human cell lines was analyzed. Only the murine P388D1 macrophage line had specific, high affinity PAF binding sites. PAF binding reached saturation within 10 min at room temperature and was irreversible. Minimal PAF metabolism was observed at the time binding saturation was achieved. Scatchard analysis of PAF binding revealed a single class of PAF receptors (7872 +/- 1310/cell) which had a dissociation constant of 0.08 +/- 0.01 nM (mean +/- SEM, eta = 6). The dissociation constant was confirmed independently by quantifying the kinetics of initial specific PAF binding. PAF binding was stereospecific, required an sn-2 acetyl substituent, and was inhibited by structurally diverse PAF antagonists including kadsurenone, BN 52021, triazolam, and CV3988. The fact that the receptors are functionally active was shown by the observation that 1 to 100 pM PAF increased free intracellular calcium in P388D1 cells in a dose-related manner. These studies demonstrate that P388D1 macrophages have functional PAF receptors whose affinity and structural specificities are similar to PAF receptors in other cells. The availability of a stable cell line that binds but does not metabolize PAF will greatly facilitate studies of the PAF receptor.  相似文献   

18.
Endothelin binding sites in porcine aortic and rat lung membranes   总被引:4,自引:0,他引:4  
High-affinity binding sites for endothelin were identified on porcine aortic and rat lung membranes. Interaction of 125I-labelled endothelin with its binding site was specific, saturable, time- and temperature-dependent but dissociation of receptor-bound ligand was minimal. Maximal binding was observed at pH 7.0 in porcine aorta and at pH 3.1 in the rat lung. Treatment of membranes with trypsin destroyed the binding site in both tissues. Porcine endothelin showed a higher affinity for receptors in both tissues compared to rat endothelin. Vasoactive peptides and Ca2+ channel antagonists did not interact with this site suggesting high specificity of binding. Analysis of saturation binding showed that the number of binding sites was 1250 +/- 104 and 1650 +/- 170 fmol/mg protein and the affinity of binding sites was 0.47 +/- 0.15 and 0.16 +/- 0.07 nM in the aorta and the lungs respectively (n = 5). Presence of protease inhibitors did not alter binding suggesting that the label was stable under the incubation conditions. This was further confirmed by HPLC. Removal of the endothelium from the aorta did not change the binding characteristics of this tissue. Ca2+ and Mg2+ ions caused an increase in binding by increasing the affinity. Binding was completely abolished in the presence of Triton and dithiothreitol. The binding sites identified in this study may be responsible for the actions of endothelin in the aorta and the lung.  相似文献   

19.
The title compound, L-659,989, is a highly potent, competitive, and selective antagonist of the binding of [3H]PAF to its receptors in platelet membranes from rabbits and humans. It exhibits equilibrium inhibition constants for PAF binding of 1.1 nM (rabbit) to 9.0 nM (human), values that are at least 1-2 orders of magnitude lower than those of other PAF antagonists tested. L-659,989 potently inhibits PAF-induced aggregation of rabbit platelets and degranulation of rat (ED50 4.5 nM) and human (ED50 10 nM) neutrophils. L-659,989 inhibits PAF-induced extravasation and lysosomal enzyme release in rats, and is active orally in female rats (ED50 0.2 mg/kg) with an extraordinary oral duration of action of 12 to 16 hours at 1.0 mg/kg p.o.  相似文献   

20.
The formyl peptide chemotaxis receptor of rabbit neutrophils and purified rabbit neutrophil plasma membranes has been identified by several affinity labeling techniques: covalent affinity cross-linking of N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys (125I-hexapeptide) to the membrane-bound receptor with either dimethyl suberimidate or ethylene glycol bis(succinimidyl succinate) and photoactivation of N-formyl-Nle-Leu-Phe-Nle-125I-Tyr-N epsilon-[6-[(4-azido-2-nitrophenyl)amino]hexanoyl]Lys(125I-PAL). These techniques specifically identify the receptor as a polypeptide that migrates as a broad band on sodium dodecyl sulfate-polyacrylamide electrophoresis, with Mr 50 000-65 000. The receptor has been solubilized in active form from rabbit neutrophil membranes with the detergents 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and digitonin and from whole cells with CHAPS. Chemotaxis receptor activity was measured by the ability of the solubilized membrane material to bind 125I-hexapeptide or fMet-Leu-[3H]Phe with gel filtration or rapid filtration through poly(ethylenimine)- (PEI) treated filters as assay systems. 125I-PAL was specifically cross-linked to the same molecular weight material in the CHAPS and digitonin solubilized extract, but no specific labeling of the receptor was seen when membranes were extracted with Nonidet P-40 and Triton X-100. Therefore, although a large number of detergents are able to solubilize the receptor, it appears that some release the receptor in an inactive form. The ligand binding characteristics of fMet-Leu-[3H]Phe to the CHAPS-solubilized receptor shared properties with the membrane-bound formyl peptide receptor, both of which showed curvilinear, concave-upward Scatchard plots. Computer curve fitting with NONLIN and statistical analyses of the binding data indicated that for both the membrane-bound and solubilized receptors a two saturable sites model fitted the data significantly better (p less than 0.01) than did a one saturable site model. The characteristics of the two saturable sites model for the soluble receptor were a high-affinity site with a KD value of 1.25 +/- 0.45 nM and a low-affinity site with a KD value of 19.77 +/- 3.28 nM. A total of 35% of the two sites detected was of the higher affinity. In addition, a Hill coefficient of 0.61 +/- 0.12 was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号