首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Elicitins are 10 kDa proteins secreted by Phytophthora fungi, that elicit resistance against certain plant pathogens. Various natural molecules, mutated recombinant elicitins and synthetic peptides were previously shown to differentially induce in tobacco leaf necrosis and defence genes, activities borne by several sites which were identified. We report a novel necrosis-determining residue at position 25, revealed by the comparison of the necrotic activity and sequence of alpha-cinnamomin with those of other known elicitins. Using a modified recombinant beta-cryptogein, expressed in Pichia pastoris, we show that the substitution of asparagine 25 by a serine leads to a significant enhancement of the necrotic activity.  相似文献   

2.
Phytophthora spp. secrete proteins called elicitins in vitro that can specifically induce hypersensitive response and systemic acquired resistance in tobacco. In Phytophthora parasitica, the causal agent of black shank, most isolates virulent on tobacco are unable to produce elicitins in vitro. Recently, however, a few elicitin-producing P. parasitica strains virulent on tobacco have been isolated. We investigated the potential diversity of elicitin genes in P. parasitica isolates belonging to different genotypes and with various virulence levels toward tobacco as well as elicitin expression pattern in vitro and in planta. Although elicitins are encoded by a multigene family, parAl is the main elicitin gene expressed. This gene is highly conserved among isolates, regardless of the elicitin production and virulence levels toward tobacco. Moreover, we show that elicitin-producing P. parasitica isolates virulent on tobacco down regulate parAl expression during compatible interactions, whichever host plant is tested. Conversely, one elicitin-producing P. parasitica isolate that is pathogenic on tomato and avirulent on tobacco still expresses parAl in the compatible interaction. Therefore, some P. parasitica isolates may evade tobacco recognition by down regulating parA1 in planta. The in planta down regulation of parA1 may constitute a suitable mechanism for P. parasitica to infect tobacco without deleterious consequences for the pathogen.  相似文献   

3.
J C Huet  J C Pernollet 《FEBS letters》1989,257(2):302-306
The phytopathogenic fungi Phytophthora cinnamomi cause systemic leaf necrosis on its non-host tobacco; in culture, it secretes a protein, called cinnamomin, which elicits leaf necrosis and protects tobacco against the pathogen Phytophthora nicotianoe, in a way similar to cryptogein and different from capsicein, elicitins of known amino acid sequences. The cinnamomin sequence has been determined and compared to other elicitins. The differences in the 3 elicitin sequences were correlated to the biological activities: 2 lysines were ascribed as the key amino acids involved in the differential control of protection with respect to necrosis.  相似文献   

4.
Elicitins是一类分子量约为10kD的小分子蛋白激发子,由Phytophthora和Pythium两个属的植物病原卵菌胞外分泌产生,在烟草上引起过敏性反应(hypersensitive response,HR)和系统获得抗病性(systemic acquired resistance,SAR)。中从Elicitins结构与功能、生物学意义、基因表达调控,Elicitins在植物上诱发的信号传导和转Ebcitins基因的抗病基因工程5个方面概述了Elicitins的研究进展。  相似文献   

5.
The potential role of extracellular elicitor proteins (elicitins) from Phytophthora species as avirulence factors in the interaction between Phytophthora and tobacco was examined. A survey of 85 Phytophthora isolates representing 14 species indicated that production of elicitin is almost ubiquitous except for isolates of Phytophthora parasitica from tobacco. The production of elicitins by isolates of P. parasitica correlated without exception with low or no virulence on tobacco. Genetic analysis was conducted by using a cross between two isolates of P. parasitica, segregating for production of elicitin and virulence on tobacco. Virulence assays of the progeny on tobacco confirmed the correlation between production of elicitin and low virulence.  相似文献   

6.
Palmivorein, a new member of the elicitin family, was purified from the culture filtrate of Phytophthora palmivora isolated from the rubber tree, Hevea brasiliensis. The elicitin was obtained by ammonium sulfate precipitation and further purified using ion-exchange and gel filtration. The molecular weight, isoelectric point, amino acid composition and N-terminal sequences of this molecule are reported and compared to other known elicitins. Palmivorein, as determined by SDS-PAGE, is a small protein of M(r) ca. 10,000. It is classified as an alpha-elicitin according to its acidic pI and the valine residue at position 13. Like other elicitins, the P. palmivora elicitin causes tissue necrosis on tested tobacco leaves. It also causes severe wilting and necrosis of Hevea tissue, and leaves of the susceptible rubber clone (with respect to P. palmivora) are much more sensitive to this elicitin than those that are resistant.  相似文献   

7.
We report on the molecular cloning of the Phytophthora megasperma H20 (PmH20) glycoprotein shown previously as an inducer of the hypersensitive response, of localized acquired resistance and of systemic acquired resistance in tobacco (Nicotiana tabacum), and of the PmH20 alpha- and beta-megaspermin, two elicitins of class I-A and I-B, respectively. The structure of the glycoprotein shows a signal peptide of 20 amino acids followed by the typical elicitin 98-amino acid-long domain and a 77-amino acid-long C-terminal domain carrying an O-glycosylated moiety. The molecular mass deduced from the translated cDNA sequence is 14,920 and 18,676 D as determined by mass spectrometry. This structure together with multiple sequence alignments and phylogenetic analyses indicate that the glycoprotein belongs to class III elicitins. It is the first class III elicitin protein characterized, which we named gamma-megaspermin. We compared the biological activity of the three PmH20 elicitins when applied to tobacco cv Samsun NN plants. Although alpha- and gamma-megaspermin were similarly active, beta-megaspermin was the most active in inducing the hypersensitive response and localized acquired resistance, which was assessed by measuring the levels of acidic and basic pathogenesis-related proteins and of the antioxidant phytoalexin scopoletin. The three elicitins induced similar levels of systemic acquired resistance measured as the expression of acidic PR proteins and is increased resistance to challenge tobacco mosaic virus infection.  相似文献   

8.
9.
We prepared a series of cryptogein mutants, an elicitor from Phytophthora cryptogea, with altered abilities to bind sterols and fatty acids. The induction of the early events, i.e., synthesis of active oxygen species and pH changes, in suspension tobacco cells by these mutated proteins was proportional to their ability to bind sterols but not fatty acids. Although the cryptogein-sterol complex was suggested to be a form triggering a defense reaction in tobacco, some proteins unable to bind sterols induced the synthesis of active oxygen species and pH changes. The modeling experiments showed that conformational changes after the introduction of bulky residues into the omega loop of cryptogein resemble those induced by sterol binding. These changes may be necessary for the ability to trigger the early events by elicitins. However, the ability to stimulate necrosis in suspension tobacco cells and the expression of defense proteins in tobacco plants were linked neither to the lipid binding capacity nor to the capacity to provoke the early events. On the basis of these experiments and previous results, we propose that elicitins could stimulate two signal pathways. The first one induces necroses and the expression of pathogen-related proteins, includes tyrosine protein kinases and mitogen-activated protein kinases, and depends on the overall structure and charge distribution. The second type of interaction is mediated by phospholipase C and protein kinase C. It triggers the synthesis of active oxygen species and pH changes. This interaction depends on the ability of elicitins to bind sterols.  相似文献   

10.
H(2)O(2) from the oxidative burst, cell death, and defense responses such as the production of phenylalanine ammonia lyase (PAL), salicylic acid (SA), and scopoletin were analyzed in cultured tobacco (Nicotiana tabacum) cells treated with three proteinaceous elicitors: two elicitins (alpha-megaspermin and beta-megaspermin) and one glycoprotein. These three proteins have been isolated from Phytophthora megasperma H20 and have been previously shown to be equally efficient in inducing a hypersensitive response (HR) upon infiltration into tobacco leaves. However, in cultured tobacco cells these elicitors exhibited strikingly different biological activities. beta-Megaspermin was the only elicitor that caused cell death and induced a strong, biphasic H(2)O(2) burst. Both elicitins stimulated PAL activity similarly and strongly, while the glycoprotein caused only a slight increase. Only elicitins induced SA accumulation and scopoletin consumption, and beta-megaspermin was more efficient. To assess the role of H(2)O(2) in HR cell death and defense response expression in elicitin-treated cells, a gain and loss of function strategy was used. Our results indicated that H(2)O(2) was neither necessary nor sufficient for HR cell death, PAL activation, or SA accumulation, and that extracellular H(2)O(2) was not a direct cause of intracellular scopoletin consumption.  相似文献   

11.
12.
13.
14.
Elicitins are a family of small proteins secreted by Phytophthora species that have a high degree of homology and elicit defense reactions in tobacco (Nicotiana tabacum). They display acidic or basic characteristics, the acidic elicitins being less efficient in inducing plant necrosis. In this study we compared the binding properties of four elicitins (two basic and two acidic) and early-induced signal transduction events (Ca2+ influx, extracellular medium alkalinization, and active oxygen species production). The affinity for tobacco plasma membrane-binding sites and the number of binding sites were similar for all four elicitins. Furthermore, elicitins compete with one another for binding sites, suggesting that they interact with the same receptor. The four elicitins induced Ca2+ influx, extracellular medium alkalinization, and the production of active oxygen species in tobacco cell suspensions, but the intensity and kinetics of these effects were different from one elicitin to another. As a general observation the concentrations that induce similar levels of biological activities were lower for basic elicitins (with the exception of cinnamomin-induced Ca2+ uptake). The qualitative similarity of early events induced by elicitins indicates a common transduction scheme, whereas fine signal transduction tuning is different in each elicitin.  相似文献   

15.
Elicitins secreted by phytopathogenic Phytophthora spp. are proteinaceous elicitors of plant defense mechanisms and were demonstrated to load, carry, and transfer sterols between membranes. The link between elicitor and sterol-loading properties was assessed with the use of site-directed mutagenesis of the 47 and 87 cryptogein tyrosine residues, postulated to be involved in sterol binding. Mutated cryptogeins were tested for their ability to load sterols, bind to plasma membrane putative receptors, and trigger biological responses. For each mutated elicitin, the chemical characterization of the corresponding complexes with stigmasterol (1:1 stoichiometry) demonstrated their full functionality. However, these proteins were strongly altered in their sterol-loading efficiency, specific binding to high-affinity sites, and activities on tobacco cells. Ligand replacement experiments strongly suggest that the formation of a sterol-elicitin complex is a requisite step before elicitins fasten to specific binding sites. This was confirmed with the use of two sterol-preloaded elicitins. Both more rapidly displaced labeled cryptogein from its specific binding sites than the unloaded proteins. Moreover, the binding kinetics of elicitins are related to their biological effects, which constitutes the first evidence that binding sites could be the biological receptors. The first event involved in elicitin-mediated cell responses is proposed to be the protein loading with a sterol molecule.  相似文献   

16.
The phytopathogenic oomycete Phytophthora capsici secretes in culture a phospholipase activity. Two enzyme isoforms exhibiting a high phospholipase B activity were isolated by chromatography and electrophoresis. They differ in their apparent molar masses (22 and 32 kDa). Both proteins are glycosylated and share the same N-terminal amino acid sequence up to the 39th residue with a high homology with capsicein, the P. capsici elicitin. Although devoid of phospholipase activity, capsicein was shown by circular dichroism to specifically interact with negatively charged phospholipids, suggesting that the membrane lipids could be a potential target for elicitins.  相似文献   

17.
Ancient origin of elicitin gene clusters in Phytophthora genomes   总被引:1,自引:0,他引:1  
The genus Phytophthora belongs to the oomycetes in the eukaryotic stramenopile lineage and is comprised of over 65 species that are all destructive plant pathogens on a wide range of dicotyledons. Phytophthora produces elicitins (ELIs), a group of extracellular elicitor proteins that cause a hypersensitive response in tobacco. Database mining revealed several new classes of elicitin-like (ELL) sequences with diverse elicitin domains in Phytophthora infestans, Phytophthora sojae, Phytophthora brassicae, and Phytophthora ramorum. ELIs and ELLs were shown to be unique to Phytophthora and Pythium species. They are ubiquitous among Phytophthora species and belong to one of the most highly conserved and complex protein families in the Phytophthora genus. Phylogeny construction with elicitin domains derived from 156 ELIs and ELLs showed that most of the diversified family members existed prior to divergence of Phytophthora species from a common ancestor. Analysis to discriminate diversifying and purifying selection showed that all 17 ELI and ELL clades are under purifying selection. Within highly similar ELI groups there was no evidence for positively selected amino acids suggesting that purifying selection contributes to the continued existence of this diverse protein family. Characteristic cysteine spacing patterns were found for each phylogenetic clade. Except for the canonical clade ELI-1, ELIs and ELLs possess C-terminal domains of variable length, many of which have a high threonine, serine, or proline content suggesting an association with the cell wall. In addition, some ELIs and ELLs have a predicted glycosylphosphatidylinositol site suggesting anchoring of the C-terminal domain to the cell membrane. The eli and ell genes belonging to different clades are clustered in the genomes. Overall, eli and ell genes are expressed at different levels and in different life cycle stages but those sharing the same phylogenetic clade appear to have similar expression patterns.  相似文献   

18.
The oomycete Phytophthora sojae is a severe pathogen of soybean. Several resistance genes against races of P. sojae exist in soybean but the nature of corresponding avirulence genes is unknown. Clones encoding four different isoforms of a protein elicitor from P. sojae (sojein 1–4) belonging to the class of acidic α-elicitins have been isolated. These 98 amino acid proteins show high homology to elicitins from other Phytophthora species. The different sojein isoforms were expressed in Escherichia coli as His-tagged fusion proteins. Purified sojein as well as recombinant sojein isoforms induce hypersensitive reaction (HR)-like lesions in tobacco but are not active as race-specific elicitors in soybean. However all sojein isoforms induce defence-related genes like those encoding phenylalanine ammonia lyase, glutathione-S-transferase and chalcone synthase in tobacco and soybean plants and cell cultures. It is concluded that sojeins contribute to the induction of defence responses but that they are not involved in race specific recognition of the P. sojae races by soybean plants.  相似文献   

19.
The phytopathogenic fungi Phytophthora subspecies elicit hypersensitive-like necroses on their nonhost tobacco (Nicotiana tabacum), with the exception of the tobacco pathogen Phytophthora nicotianæ. In culture, these fungi—except P. nicotianæ—secrete proteins, called elicitins, that cause these remote leaf necroses and are responsible for the incompatible reaction. These proteins protect tobacco against invasion by the agent of the tobacco black shank, P. nicotianæ, which is unable to produce such an elicitor. Cryptogein, secreted by Phytophthora cryptogea, has been purified, sequenced, and characterized as an elicitin, a novel family of 10 kilodalton holoproteins. In the present paper, we examined the secretion and biosynthesis of this protein elicitor from P. cryptogea culture. Results showed that the secretion of cryptogein began later than its synthesis and stopped earlier, simultaneously with mycelium growth, when the nitrogen source in the culture medium was nearly exhausted. Electrophoretic patterns of total protein from mycelium extracts and N-terminal sequence analysis showed that cryptogein accumulated in the mycelium in its mature form. The comparison of the immunoselected in vitro translation products with 35S in vivo-labeled cryptogein showed that cryptogein was synthesized as a preprotein with a signal peptide removed cotranslationally before the secretion into the culture medium. Immunoselected in vitro-synthesized products were subjected to radiosequencing to clearly determine the N-terminal position and the size (20 amino acids) of the signal peptide. Cryptogein did not undergo any other posttranslational modification.  相似文献   

20.
In culture, Phytophthora fungi — except P. nicotianae — secrete proteins, called elicitins, which cause necrosis on the leaf of the non-host tobacco (Nicotiana tabacum L.) at a distance from the inoculation site, and are responsible for the incompatible reaction. Cryptogein and capsicein are elicitins secreted by P. cryptogea and P. capsici, respectively, and form part of a novel family of 10-kDa holoproteins. On tobacco, the necrotic activity of cryptogein is approx. 100-fold higher than that of capsicein. Using elicitins radioactively labelled in vivo, we have demonstrated that cryptogein and capsicein (i) move from a wound in the stem towards the leaves where they interact directly, (ii) reach their target without undergoing any molecular alteration, (iii) are carried in, and at the same rate as, the sap flow in the xylem, (iv) do not alter the rate of the xylem flow although they are able to provoke drastic damage to the lamina. Consequently, the remote necrotic activity of elicitins does not require any transportable secondary plant elicitor, so the differences in necrotic properties should be due to structural features involved in the interaction of elicitins with the leaf target cells.Abbreviations Mr relative molecular mass - RPLC reversephase liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis The authors are indebted to Mauricette Sallé-Tourné, Marc Sallantin and Christian Ouali for their skilful technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号