首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ankyrins are membrane adaptor molecules that play important roles in coupling integral membrane proteins to the spectrin-based cytoskeleton network. Human mutations of ankyrin genes lead to severe genetic diseases such as fatal cardiac arrhythmias and hereditary spherocytosis. To elucidate the evolutionary history of ankyrins, we have identified novel ankyrin sequences in insect, fish, frog, chicken, dog, and chimpanzee genomes and explored the phylogenetic relationships of the ankyrin gene family. Our data demonstrate that duplication of ankyrin genes occurred at two different stages. The first duplication resulted from an independent evolution event specific in Arthropoda after its divergence from Chordata. Following the separation from Urochordata, expansion of ankyrins in vertebrates involved ancestral genome duplications. We did not find evidence of coordinated arrangements of gene families of ankyrin-associated membrane proteins on paralogous chromosomes. In addition, evolution of the 24 ANK-repeats strikingly correlated with the exon boundary sites of ankyrin genes, which might have occurred before its duplication in vertebrates. Such correlation is speculated to bring functional diversity and complexity. Moreover, based on the phylogenetic analysis of the ANK-repeat domain, we put forward a novel model for the putative primordial ankyrin that contains the fourth six-ANK-repeat subdomain and the spectrin-binding domain. These findings will provide guides for future studies concerning structure, function, evolutionary origins of ankyrins, and possibly other cytoskeletal proteins.  相似文献   

2.
Additional copies of genes resulting from two whole genome duplications at the base of the vertebrates have been suggested as enabling the evolution of vertebrate-specific structures such as neural crest, a midbrain/hindbrain organizer and neurogenic placodes. These structures, however, did not evolve entirely de novo, but arose from tissues already present in an ancestral chordate. This review discusses the evolutionary history of co-option of old genes for new roles in vertebrate development as well as the relative contributions of changes in cis-regulation and in protein structure. Particular examples are the FoxD, FGF8/17/18 and Pax2/5/8 genes. Comparisons with invertebrate chordates (amphioxus and tunicates) paint a complex picture with co-option of genes into new structures occurring both after and before the whole genome duplications. In addition, while cis-regulatory changes are likely of primary importance in evolution of vertebrate-specific structures, changes in protein structure including alternative splicing are non-trivial.  相似文献   

3.
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion—such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these—is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox “paralogon”) and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.  相似文献   

4.
The neural crest has long been regarded as one of the key novelties in vertebrate evolutionary history. Indeed, the vertebrate characteristic of a finely patterned craniofacial structure is intimately related to the neural crest. It has been thought that protochordates lacked neural crest counterparts. However, recent identification and characterization of protochordate genes such as Pax3/7, Dlx and BMP family members challenge this idea, because their expression patterns suggest remarkable similarity between the vertebrate neural crest and the ascidian dorsal midline epidermis, which gives rise to both epidermal cells and sensory neurons. The present paper proposes that the neural crest is not a novel vertebrate cell population, but may have originated from the protochordate dorsal midline epidermis. Therefore, the evolution of the vertebrate neural crest should be reconsidered in terms of new cell properties such as pluripotency, delamination-migration and the carriage of an anteroposterior positional value, key innovations leading to development of the complex craniofacial structure in vertebrates. Molecular evolutionary events involved in the acquisitions of these new cell properties are also discussed. Genome duplications during early vertebrate evolution may have played an important role in allowing delamination of the neural crest cells. The new regulatory mechanism of Hox genes in the neural crest is postulated to have developed through the acquisition of new roles by coactivators involved in retinoic acid signaling.  相似文献   

5.
It has been proposed that two events of duplication of the entire genome occurred early in vertebrate history (2R hypothesis). Several phylogenetic studies with a few gene families (mostly Hox genes and proteins from the MHC) have tried to confirm these polyploidization events. However, data from a single locus cannot explain the evolutionary history of a complete genome. To study this 2R hypothesis, we have taken advantage of the phylogenetic position of the lamprey to study the history of gene duplications in vertebrates. We selected most gene families that contain several paralogous genes in vertebrates and for which lamprey genes and an out-group are known in databases. In addition, we isolated members of the nuclear receptor superfamily in lamprey. Hagfish genes were also analyzed and found to confirm the lamprey gene analysis. Consistent with the 2R hypothesis, the phylogenetic analysis of 33 selected gene families, dispersed through the whole genome, revealed that one period of gene duplication arose before the lamprey-gnathostome split and this was followed by a second period of gene duplication after the lamprey-gnathostome split. Nevertheless, our analysis suggests that numerous gene losses and other gene-genome duplications occurred during the evolution of the vertebrate genomes. Thus, the complexity of all the paralogy groups present in vertebrates should be explained by the contribution of genome duplications (2R hypothesis), extra gene duplications, and gene losses.  相似文献   

6.
snail genes mark presumptive mesoderm across bilaterian animals. In gnathostome vertebrates, snail genes are a multimember family that are also markers of premigratory neural crest (pnc) and some postmigratory neural crest derivatives in the pharyngeal arches. Previous studies of nonvertebrate chordates indicate that they have single snail genes that retain ancestral functions in mesoderm development and perhaps in specification of a pnc-like cell population. Lampreys are the most basal extant vertebrates, with well-defined developmental morphology. Here, we identify a single snail gene from the lamprey Petromyzon marinus that is the phylogenetic outgroup of all gnathostome snail genes. This single lamprey snail gene retains ancestral snail patterning domains present in nonvertebrate chordates. Lamprey snail is also expressed in tissues that are broadly equivalent to the combined sites of expression of all three gnathostome snail paralogy groups, excepting in embryonic tissues that are unique to gnathostomes. Importantly, while snail does not appear to demarcate an early neural crest population in lampreys as it does in gnathostomes, it may be involved in later neural crest development. Together, our results indicate that significant cis-regulatory innovation occurred in a single snail gene before the vertebrate radiation, and significant subfunctionalization occurred after snail gene duplications in the gnathostome lineages.  相似文献   

7.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

8.
Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural‐crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole‐genome duplication that occurred 320–350 million years ago at the base of the teleost lineage, the so‐called fish‐specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity.  相似文献   

9.
The new discipline of Evolutionary Developmental Biology (Evo-Devo) is facing the fascinating paradox of explaining morphological evolution using conserved pieces or genes to build divergent animals. The cephalochordate amphioxus is the closest living relative to the vertebrates, with a simple, chordate body plan, and a genome directly descended from the ancestor prior to the genome-wide duplications that occurred close to the origin of vertebrates. Amphioxus morphology may have remained relatively invariant since the divergence from the vertebrate lineage, but the amphioxus genome has not escaped evolution. We report the isolation of a second Emx gene (AmphiEmxB) arising from an independent duplication in the amphioxus genome. We also argue that a tandem duplication probably occurred in the Posterior part of the Hox cluster in amphioxus, giving rise to AmphiHox14, and discuss the structure of the chordate and vertebrate ancestral clusters. Also, a tandem duplication of Evx in the amphioxus lineage produced a prototypical Evx gene (AmphiEvxA) and a divergent gene (AmphiEvxB), no longer involved in typical Evx functions. These examples of specific gene duplications in amphioxus, and other previously reported duplications summarized here, emphasize the fact that amphioxus is not the ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.  相似文献   

10.
Neural crest cells are an important cell type present in all vertebrates, and elaboration of the neural crest is thought to have been a key factor in their evolutionary success. Genomic comparisons suggest there were two major genome duplications in early vertebrate evolution, raising the possibility that evolution of neural crest was facilitated by gene duplications. Here, we review the process of early neural crest formation and its underlying gene regulatory network (GRN) as well as the evolution of important neural crest derivatives. In this context, we assess the likelihood that gene and genome duplications capacitated neural crest evolution, particularly in light of novel data arising from invertebrate chordates.  相似文献   

11.
The relaxin (RLN) and insulin-like (INSL) gene family is a group of genes involved in a variety of physiological roles that includes bone formation, testicular descent, trophoblast development, and cell differentiation. This family appears to have expanded in vertebrates relative to non-vertebrate chordates, but the relative contribution of whole genome duplications (WGDs) and tandem duplications to the observed diversity of genes is still an open question. Results from our comparative analyses favor a model of divergence post vertebrate WGDs in which a single-copy progenitor found in the last common ancestor of vertebrates experienced two rounds of WGDs before the functional differentiation that gave rise to the RLN and INSL genes. One of the resulting paralogs was subsequently lost, resulting in three proto-RLN/INSL genes on three separate chromosomes. Subsequent rounds of tandem gene duplication and divergence originated the set of paralogs found on a given cluster in extant vertebrates. Our study supports the hypothesis that differentiation of the RLN and INSL genes took place independently in each RLN/INSL cluster after the two WGDs during the evolutionary history of vertebrates. In addition, we show that INSL4 represents a relatively old gene that has been apparently lost independently in all Euarchontoglires other than apes and Old World monkeys, and that RLN2 derives from an ape-specific duplication.  相似文献   

12.
From 2R to 3R: evidence for a fish-specific genome duplication (FSGD)   总被引:20,自引:0,他引:20  
An important mechanism for the evolution of phenotypic complexity, diversity and innovation, and the origin of novel gene functions is the duplication of genes and entire genomes. Recent phylogenomic studies suggest that, during the evolution of vertebrates, the entire genome was duplicated in two rounds (2R) of duplication. Later, approximately 350 mya, in the stem lineage of ray-finned (actinopterygian) fishes, but not in that of the land vertebrates, a third genome duplication occurred-the fish-specific genome duplication (FSGD or 3R), leading, at least initially, to up to eight copies of the ancestral deuterostome genome. Therefore, the sarcopterygian (lobe-finned fishes and tetrapods) genome possessed originally only half as many genes compared to the derived fishes, just like the most-basal and species-poor lineages of extant fishes that diverged from the fish stem lineage before the 3R duplication. Most duplicated genes were secondarily lost, yet some evolved new functions. The genomic complexity of the teleosts might be the reason for their evolutionary success and astounding biological diversity.  相似文献   

13.
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate evolution might predate the Cambrian explosion. The second genome duplication possibly dates back to the early Devonian. Recent data suggest that later in the Devonian, the fish genome was duplicated for a third time to produce up to eight copies of the original deuterostome genome. This last duplication took place after the two major radiations of jawed vertebrate life, the ray-finned fish (Actinopterygia) and the sarcopterygian lineage, diverged. Therefore the sarcopterygian fish, which includes the coelacanth, lungfish and all land vertebrates such as amphibians, reptiles, birds and mammals, tend to have only half the number of genes compared with actinopterygian fish. Although many duplicated genes turned into pseudogenes, or even 'junk' DNA, many others evolved new functions particularly during development. The increased genetic complexity of fish might reflect their evolutionary success and diversity.  相似文献   

14.
Li G  Zhang QJ  Ji ZL  Wang YQ 《Gene》2007,405(1-2):88-95
Previous studies showed that the vertebrate ABCA subfamily, one subgroup of the ATP-binding-cassette superfamily, has evolved rapidly in terms of gene duplication and loss. To further uncover the evolutionary history of the ABCA subfamily, we characterized ABCA members of two amphioxus species (Branchiostoma floridae and B. belcheri), the closest living invertebrate relative to vertebrates. Phylogenetic analysis indicated that these two species have the same set of ABCA genes (both containing six members). Five of these genes have clear orthologs in vertebrate, including one cephalochordate-specific duplication and one vertebrate-specific duplication. In addition, it is found that human orthologs of amphioxus ABCA1/4/7 and its neighboring genes mainly localize on chromosome 1, 9, 19 and 5. Considering that most of analyzed amphioxus genes have clear orthologs in zebrafish, we conclude these four human paralogous regions might derive from a common ancestral region by genome duplication occurred prior to teleost/tetrapod split. Therefore, the present results provide new evidence for 2R hypothesis.  相似文献   

15.
Evolution of the proteasome components   总被引:1,自引:1,他引:0  
 A phylogenetic analysis of proteasome subunits revealed two major families (α and β) which originated by an ancient gene duplication prior to the divergence of archaebacteria and eukaryotes. Numerous gene duplications have subsequently occurred in eukaryotes; at least nine of these duplications were shown to have occurred prior to the divergence of animals and fungi. In mammals, two genes encoding proteasome subunits (LMP2 and LMP7) are located in the major histocompatibility complex (MHC) region and play a specific role in generation of peptides for presentation by class I MHC molecules. Phylogenetic analysis of LMP7 and related sequences from mammals and lower vertebrates indicated that this locus arose by gene duplication prior to the divergence of jawed and jawless vertebrates; the time of this duplication was estimated to have been about 600 million years ago. The evolutionary history of the proteasome subunits provides support for a model of the evolution of new gene function postulating that, after gene duplication, the proteins encoded by daughter loci can adapt to specialized functions previously performed by the product of a single generalized ancestral locus. Received: 19 August 1996 / Revised: 24 December 1996  相似文献   

16.
Wanda: a database of duplicated fish genes   总被引:2,自引:1,他引:1       下载免费PDF全文
Comparative genomics has shown that ray-finned fish (Actinopterygii) contain more copies of many genes than other vertebrates. A large number of these additional genes appear to have been produced during a genome duplication event that occurred early during the evolution of Actinopterygii (i.e. before the teleost radiation). In addition to this ancient genome duplication event, many lineages within Actinopterygii have experienced more recent genome duplications. Here we introduce a curated database named Wanda that lists groups of orthologous genes with one copy from man, mouse and chicken, one or two from tetraploid Xenopus and two or more ancient copies (i.e. paralogs) from ray-finned fish. The database also contains the sequence alignments and phylogenetic trees that were necessary for determining the correct orthologous and paralogous relationships among genes. Where available, map positions and functional data are also reported. The Wanda database should be of particular use to evolutionary and developmental biologists who are interested in the evolutionary and functional divergence of genes after duplication. Wanda is available at http://www.evolutionsbiologie.uni-konstanz.de/Wanda/.  相似文献   

17.
Vertebrates originated in the lower Cambrian. Their diversification and morphological innovations have been attributed to large-scale gene or genome duplications at the origin of the group. These duplications are predicted to have occurred in two rounds, the "2R" hypothesis, or they may have occurred in one genome duplication plus many segmental duplications, although these hypotheses are disputed. Under such models, most genes that are duplicated in all vertebrates should have originated during the same period. Previous work has shown that indeed duplications started after the speciation between vertebrates and the closest invertebrate, amphioxus, but have not set a clear ending. Consideration of chordate phylogeny immediately shows the key position of cartilaginous vertebrates (Chondrichthyes) to answer this question. Did gene duplications occur as frequently during the 45 Myr between the cartilaginous/bony vertebrate split and the fish/tetrapode split as in the previous approximately 100 Myr? Although the time interval is relatively short, it is crucial to understanding the events at the origin of vertebrates. By a systematic appraisal of gene phylogenies, we show that significantly more duplications occurred before than after the cartilaginous/bony vertebrate split. Our results support rounds of gene or genome duplications during a limited period of early vertebrate evolution and allow a better characterization of these events.  相似文献   

18.
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families.  相似文献   

19.
The diversity of axon guidance (AG) receptors reflects gains in complexity of the animal nervous system during evolution. Members of the Roundabout (Robo) family of receptors interact with Slit proteins and play important roles in many developmental processes, including AG and neural crest cell migration. There are four members of the Robo gene family. However, the evolutionary history of Robo family genes remain obscure. We analyzed the distribution of Robo family members in metazoan species ranging in complexity from hydras to humans. We undertook a phylogenetic analysis in metazoans, synteny analysis, and ancestral chromosome mapping in vertebrates, and detected selection pressure and functional divergence among four mammalian Robo paralogs. Based on our analysis, we proposed that the ancestral Robo gene could have undergone a tandem duplication in the vertebrate ancestor; then one round of whole genome duplication events occurred before the divergence of ancestral lamprey and gnathostome, generating four paralogs in early vertebrates. Robo4 paralog underwent segmental loss in the following evolutionary process. Our results showed that Robo3 paralog is under more powerful purifying selection pressure compared with other three paralogs, which could correlate with its unique expression pattern and function. Furthermore, we found four sites under positive selection pressure on the Ig1‐2 domains of Robo4 that might interfere with its binding to Slits ligand. Diverge analysis at the amino acid level showed that Robo4 paralog have relatively greater functional diversifications than other Robo paralogs. This coincides with the fact that Robo4 predominantly functions in vascular endothelial cells but not the nervous system.  相似文献   

20.
Katju V  Lynch M 《Genetics》2003,165(4):1793-1803
The significance of gene duplication in provisioning raw materials for the evolution of genomic diversity is widely recognized, but the early evolutionary dynamics of duplicate genes remain obscure. To elucidate the structural characteristics of newly arisen gene duplicates at infancy and their subsequent evolutionary properties, we analyzed gene pairs with < or =10% divergence at synonymous sites within the genome of Caenorhabditis elegans. Structural heterogeneity between duplicate copies is present very early in their evolutionary history and is maintained over longer evolutionary timescales, suggesting that duplications across gene boundaries in conjunction with shuffling events have at least as much potential to contribute to long-term evolution as do fully redundant (complete) duplicates. The median duplication span of 1.4 kb falls short of the average gene length in C. elegans (2.5 kb), suggesting that partial gene duplications are frequent. Most gene duplicates reside close to the parent copy at inception, often as tandem inverted loci, and appear to disperse in the genome as they age, as a result of reduced survivorship of duplicates located in proximity to the ancestral copy. We propose that illegitimate recombination events leading to inverted duplications play a disproportionately large role in gene duplication within this genome in comparison with other mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号