首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ascidian larva contains tubular neural tissue, one of the prominent anatomical features of the chordates. The cell-cleavage pattern and cell maps of the nervous system have been described in the ascidian larva in great detail. Cell types in the neural tube, however, have not yet been defined due to the lack of a suitable molecular marker. In the present work, we identified neuronal cells in the caudal neural tube of theHalocynthiaembryo by utilizing a voltage-gated Na+channel gene, TuNa I, as a molecular marker. Microinjection of a lineage tracer revealed that TuNa I-positive neurons in the brain and in the trunk epidermis are derived from the a-line of the eight-cell embryo, which includes cell fates to epidermal and neural tissue. On the other hand, TuNa I-positive cells in the more caudal part of the neural tissue were not stained by microinjection into the a-line. These neurons are derived from the A-line, which contains fates of notochord and muscle, but not of epidermis. Electron microscopic observation confirmed that A-line-derived neurons consist of motor neurons innervating the dorsal and ventral muscle cells. Isolated A-line blastomeres have active membrane excitability distinct from those of the a-line-derived neuronal cells after culture under cleavage arrest, suggesting that the A-line gives rise to a neuronal cell distinct from that of the a-lineage. TuNa I expression in the a-line requires signals from another cell lineage, whereas that in the A-line occurs without tight cell contact. Thus, there are at least two distinct neuronal lineages with distinct cellular behaviors in the ascidian larva: the a-line gives rise to numerous neuronal cells, including sensory cells, controlled by a mechanism similar to vertebrate neural induction, whereas A-line cells give rise to motor neurons and ependymal cells in the caudal neural tube that develop in close association with the notochord or muscle lineage, but not with the epidermal lineage.  相似文献   

2.
Distinct classes of neurons are generated from progenitor cells distributed in characteristic dorsoventral patterns in the developing spinal neural tube. We define restricted neural progenitor populations by the discrete, nonoverlapping expression of Ngn1, Math1, and Mash1. Crossinhibition between these bHLH factors is demonstrated and provides a mechanism for the generation of discrete bHLH expression domains. This precise control of bHLH factor expression is essential for proper neural development since as demonstrated in both loss- and gain-of-function experiments, expression of Math1 or Ngn1 in dorsal progenitor cells determines whether LH2A/B- or dorsal Lim1/2-expressing interneurons will develop. Together, the data suggest that although Math1 and Ngn1 appear to be redundant with respect to neurogenesis, they have distinct functions in specifying neuronal subtype in the dorsal neural tube.  相似文献   

3.
4.
5.
6.
7.
The generation of distinct neural subtypes depends on the activities of cell-extrinsic and -intrinsic factors during the development of the vertebrate CNS. Previous studies have provided a molecular basis for how neural progenitors are patterned and generate distinct descendants that are spatially and temporally regulated by inductive signals secreted by polarized sources. However, it still remains unknown how the generation of neural descendants by progenitors located at polarized sources of inductive signals is controlled. Sonic hedgehog (Shh), which is expressed at the ventral midline in the forebrain, has been shown to play a critical role for the patterning and specification of distinct neural subtypes in the forebrain. Here, we analyzed the identities and distributions of Shh-descendants generated at discrete time points in the forebrain by using a ShhcreER(T2) mouse driver line in which a tamoxifen-inducible Cre cassette was inserted into the Shh locus together with a Z/EG mouse reporter line. Our results showed that Shh-expressing neural progenitors generated neuronal and glial descendants distributed throughout the telencephalon and diencephalon in a temporally distinct manner. Furthermore, our results showed that Shh-progenitors are located at two spatially distinct sub-domains that can be characterized by their temporally distinct patterns of Shh expression. These results suggest that temporally- and spatially controlled mechanisms that specify neural subtypes operate in the Shh-expressing progenitor domain, and raise the possibility that the distinct temporal gradient of Shh activity might be responsible for the generation of distinct neural subtypes in the telencephalon.  相似文献   

8.
The floor plate is a signaling center in the ventral neural tube of vertebrates with important functions during neural patterning and axon guidance. It is composed of a centrally located medial floor plate (MFP) and a bilaterally positioned lateral floor plate (LFP). While the role of the MFP as source of signaling molecules like, e.g., Sonic Hedgehog (Shh) is well understood, the exact organization and function of the LFP are currently unclear. Based on expression analyses, the one cell wide LFP in zebrafish has been postulated to be a homogenous structure. We instead show that the zebrafish trunk LFP is discontinuously arranged. Single LFP cells alternate with p3 neuronal precursor cells, which develop V3 interneurons along the anteroposterior (AP) axis. Our mutant analyses indicate that both, formation of LFP and p3 cells require Delta-Notch signaling. Importantly, however, the two cell types are differentially regulated by Hedgehog (HH) and Nkx2.2 activities. This implicates a novel mechanism of neural tube patterning, in which distinct cell populations within one domain of the ventral neural tube are differently specified along the AP axis. We conclude that different levels of HH and Nkx2.2 activities are responsible for the alternating appearance of LFP and p3 neuronal progenitor cells in the zebrafish ventral neural tube.  相似文献   

9.
10.
11.
Neural crest development is regulated by the transcription factor Sox9   总被引:14,自引:0,他引:14  
The neural crest is a transient migratory population of stem cells derived from the dorsal neural folds at the border between neural and non-neural ectoderm. Following induction, prospective neural crest cells are segregated within the neuroepithelium and then delaminate from the neural tube and migrate into the periphery, where they generate multiple differentiated cell types. The intrinsic determinants that direct this process are not well defined. Group E Sox genes (Sox8, Sox9 and Sox10) are expressed in the prospective neural crest and Sox9 expression precedes expression of premigratory neural crest markers. Here, we show that group E Sox genes act at two distinct steps in neural crest differentiation. Forced expression of Sox9 promotes neural-crest-like properties in neural tube progenitors at the expense of central nervous system neuronal differentiation. Subsequently, in migratory neural crest cells, SoxE gene expression biases cells towards glial cell and melanocyte fate, and away from neuronal lineages. Although SoxE genes are sufficient to initiate neural crest development they do not efficiently induce the delamination of ectopic neural crest cells from the neural tube consistent with the idea that this event is independently controlled. Together, these data identify a role for group E Sox genes in the initiation of neural crest development and later SoxE genes influence the differentiation pathway adopted by migrating neural crest cells.  相似文献   

12.
Clonal and lineage analyses have demonstrated that although some neural crest cells have the ability to generate multiple cell types and display self-renewal ability, other crest cells generate a single or limited repertoire of cell types. However, it is not yet clear when, and in what order, crest cells become specified to adopt a particular fate. We report that the receptor tyrosine kinases TrkC and C-Kit are expressed by distinct neural crest subpopulations in vitro. We then analyzed the lineages of individual receptor-expressing crest cells and found that TrkC-expressing cells that have just emerged from the neural tube give rise to clones containing neurons or glial cells, or both, but never produce melanocytes. A short time later, TrkC-expressing cells only generate pure neuronal clones. By contrast, from their earliest appearance in neural tube outgrowths, C-Kit-expressing cells invariably give rise to clones containing only melanocytes. Our results directly demonstrate that distinct neurogenic and melanogenic sublineages diverge before or soon after crest cells emerge from the neural tube, that fate-restricted precursors are present in nascent neural crest populations and that these sublineages can be distinguished by their cell type-specific expression of receptor tyrosine kinases.  相似文献   

13.
14.
15.
We have analysed the expression during mid-gestation mouse development of the four member LRRTM gene family which encodes type 1 transmembrane proteins containing 10 extracellular leucine rich repeats and a short intracellular tail. Each family member has a developmentally regulated pattern of expression distinct from all other members. LRRTM1 is expressed in the neural tube, otic vesicle, apical ectodermal ridge, forebrain and midbrain up to a sharp central boundary. LRRTM2 is expressed in a subset of progenitors in the neural tube. LRRTM3 is expressed in a half somite wide stripe in the presomitic mesoderm adjacent to the boundary with the most recently formed somite. Additional expression is seen in the neural tube, forebrain and hindbrain. LRRTM4 is expressed in the limb mesenchyme, neural tube, caudal mesoderm and in three distinct regions of the head. Later expression occurs in a subset of the developing sclerotome. Each family member has a unique expression domain within the neural tube.  相似文献   

16.
Park M  Shen K 《The EMBO journal》2012,31(12):2697-2704
Wnt proteins play important roles in wiring neural circuits. Wnts regulate many aspects of neural circuit generation through their receptors and distinct signalling pathways. In this review, we discuss recent findings on the functions of Wnts in various aspects of neural circuit formation, including neuronal polarity, axon guidance, synapse formation, and synaptic plasticity in vertebrate and invertebrate nervous systems.  相似文献   

17.
The ventral neural tube of vertebrates consists of distinct neural progenitor domains positioned along the dorsoventral (DV) axis that develop different types of moto- and interneurons. Several signalling molecules, most notably Sonic Hedgehog (Shh), retinoic acid (RA) and fibroblast growth factor (FGF) have been implicated in the generation of these domains. Shh is secreted from the floor plate, the ventral most neural tube structure that consists of the medial (MFP) and the lateral floor plate (LFP). While the MFP is well characterized, organization and function of the LFP remains unclear. Here, we describe the novel homeobox gene nkx2.2b that is strongly expressed in the trunk LFP of zebrafish and thus represents a unique marker for the characterization of LFP formation and the identification of LFP deficient mutants. nkx2.2b and its paralog nkx2.2a (formerly known as nk2.2 and nkx2.2) arose by gene duplication in zebrafish. Both duplicates show significant differences in their expression patterns. For example, while prominent nkx2.2a expression has been described in the ventral brain [Barth, K.A., Wilson, S.W., 1995. Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755-1768], hardly any expression can be found in the trunk LFP, which is in contrast to nkx2.2b. Overexpression, mutant and inhibitor analyses show that nkx2.2b expression in the LFP is up-regulated by Shh, but repressed by retinoids and ectopic islet-1 (isl1) expression. In contrast to previously described zebrafish trunk LFP markers, like e.g. tal2 or foxa2, nkx2.2b is exclusively expressed in the LFP. Thus, it represents a unique tool to analyse the mechanisms of ventral neural tube patterning in zebrafish.  相似文献   

18.
19.
Integrin alpha 7 beta 1 is a specific cellular receptor for laminin. In the present work, we studied the distribution pattern of the alpha 7 subunit by immunofluorescence and immunoprecipitation and the role of the integrin by blocking antibodies in early chick embryos. alpha 7 immunoreactivity was first detectable in the neural plate during neural furrow formation (stage HH5, early neurula, Hamburger & Hamilton 1951) and its expression was upregulated in the neural folds during primary neurulation. The alpha 7 expression domain spanned the entire neural tube by stage HH8 (4 somites), and was then downregulated and confined to the neuroepithelial cells in the germinal region near the lumen and the ventrolateral margins of the neural tube in embryos by the onset of stage HH17 (29 somites). Expression of alpha 7 in the neural tube was transient suggesting that alpha 7 functions during neural tube closure and axon guidance and may not be required for neuronal differentiation or for the maintenance of the differentiated cell types. alpha 7 immunoreactivity was strong in the newly formed epithelial somites, although this expression was restricted only to the myotome in the mature somites. The most intense alpha 7 immunoreactivity was detectable in the paired heart primordia and the endoderm apposing the heart primordia in embryos at stage HH8. In the developing heart, alpha 7 immunoreactivity was: (i) intense in the myocardium; (ii) milder in the endocardial cushions of the ventricle; (iii) intense in the sinus venosus; (iv) distinct in the associated blood vessels; and (v) undetectable in the dorsal mesocardium of embryos at stage HH17. Inhibition of function of alpha 7 by blocking antibodies showed that alpha 7 integrin-laminin signaling may play a critical role in tissue organization of the neural plate and neural tube closure, in tissue morphogenesis of the heart tube but not in the directional migration of pre-cardiac cells, and in somite epithelialization but not in segment formation in presomitic mesoderm. In embryos treated with alpha 7 antibody, the formation of median somites in place of a notochord was intriguing and suggested that alpha 7 integrin-laminin signaling may have played a role in segment re-specification in the mesoderm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号