首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels.  相似文献   

2.
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity.  相似文献   

3.
The immunochemistry and structure of enteric bacterial porins are critical to the understanding of the immune response to bacterial infection. We raised 41 monoclonal antibodies (MAbs) to Salmonella typhimurium OmpD and OmpC porin trimers and monomers. Enzyme-linked immunosorbent assays, immunoprecipitations, and/or Western immunoblot techniques indicated that 39 MAbs (11 anti-trimer and 28 anti-monomer) in the panel are porin specific and one binds to the lipopolysaccharide; the specificity of the remaining MAb probably lies in the porin-lipopolysaccharide complex. Among the porin-specific MAbs, 10 bound cell-surface-exposed epitopes, one reacted with a periplasmic epitope, and the remaining 28 recognized determinants that are buried within the outer membrane bilayer. Many of the MAbs reacting with surface-exposed epitopes were highly specific, recognizing only the homologous porin trimers; this suggests that the cell-surface-exposed regions of porins tends to be quite different among S. typhimurium OmpF, OmpC, and OmpD porins. Immunological cross-reaction showed that S. typhimurium OmpD was very closely related to Escherichia coli NmpC and to the Lc porin of bacteriophage PA-2. Immunologically, E. coli OmpG and protein K also appear to belong to the family of closely related porins including E. coli OmpF, OmpC, PhoE, and NmpC and S. typhimurium OmpF, OmpC, and OmpD. It appears, however, that S. typhimurium "PhoE" is not closely related to this group. Finally, about one-third of the MAbs that presumably recognize buried epitopes reacted with porin domains that are widely conserved in 13 species of the family Enterobacteriaceae, but apparently not in the seven nonenterobacterial species tested. These data are evaluated in relation to host immune response to infection by gram-negative bacteria.  相似文献   

4.
Wild-type Escherichia coli K-12 produces two porins, OmpF (protein 1a) and OmpC (protein 1b). In mutants deficient in both of these "normal" porins, secondary mutants that produce a "new" porin, protein PhoE (protein E), are selected for. We determined the properties of the channels produced by each of these porins by measuring the rates of diffusion of various cephalosporins through the outer membrane in strains producing only one porin species. We found that all porin channels retarded the diffusion of more hydrophobic cephalosporins and that with monoanionic cephalosporins a 10-fold increase in the octanol-water partition coefficient of the solute produced a 5- to 6-fold decrease in the rate of penetration. Electrical charges of the solutes had different effects on different channels. Thus, with the normal porins (i.e., OmpF and OmpC proteins) additional negative charge drastically reduced the penetration rate through the channels, whereas additional positive charge significantly accelerated the penetration. In contrast, diffusion through the PhoE channel was unaffected by the presence of an additional negative charge. We hypothesize that the relative exclusion of hydrophobic and negatively charged solutes by normal porin channels is of ecological advantage to E. coli, which must exclude hydrophobic and anionic bile salts in its natural habitat. The properties of the PhoE porin are also consistent with the recent finding (M. Argast and W. Boos, J. Bacteriol. 143:142-150, 1980; J. Tommassen and B. Lugtenberg, J. Bacteriol. 143:151-157, 1980) that its biosynthesis is derepressed by phosphate starvation; the channel may thus act as an emergency pore primarily for the uptake of phosphate and phosphorylated compounds.  相似文献   

5.
The binding of lactoferrin, an iron-binding glycoprotein found in secretions and leukocytes, to the outer membrane of Gram-negative bacteria is a prerequisite to exert its bactericidal activity. It was proposed that porins, in addition to lipopolysaccharides, are responsible for this binding. We studied the interactions of human lactoferrin with the three major porins of Escherichia coli OmpC, OmpF, and PhoE. Binding experiments were performed on both purified porins and porin-deficient E. coli K12 isogenic mutants. We determined that lactoferrin binds to the purified native OmpC or PhoE trimer with molar ratios of 1.9 +/- 0.4 and 1.8 +/- 0.3 and Kd values of 39 +/- 18 and 103 +/- 15 nM, respectively, but not to OmpF. Furthermore, preferential binding of lactoferrin was observed on strains that express either OmpC or PhoE. It was also demonstrated that residues 1-5, 28-34, and 39-42 of lactoferrin interact with porins. Based on sequence comparisons, the involvement of lactoferrin amino acid residues and porin loops in the interactions is discussed. The relationships between binding and antibacterial activity of the protein were studied using E. coli mutants and planar lipid bilayers. Electrophysiological studies revealed that lactoferrin can act as a blocking agent for OmpC but not for PhoE or OmpF. However, a total inhibition of the growth was only observed for the PhoE-expressing strain (minimal inhibitory concentration of lactoferrin was 2.4 mg/ml). These data support the proposal that the antibacterial activity of lactoferrin may depend, at least in part, on its ability to bind to porins, thus modifying the stability and/or the permeability of the bacterial outer membrane.  相似文献   

6.
Purified OmpF, OmpC, NmpC, PhoE and Lc (Protein 2) porins from the Escherichia coli outer membrane were incorporated into planar phospholipid bilayer membranes and the permeability properties of the pores studied. Triton X-100 solubilised porin samples showed large and reproducible increases in membrane conductivity composed of discreet single-channel events. The magnitude of the cation selectivity found for the porins was in the order OmpC greater than OmpF greater than NmpC = Lc; PhoE was anion selective. For the cation selective porins the cation/anion permeability ratios in a variety of solutes ranged from 6 to 35. Further information on the internal structure of the porins was obtained by examination of the single-channel conductance and this was used to interpret macroscopic observations and to estimate single-channel diameters. The same porins solubilised in SDS exhibited slight conductance increase with no observable single-channel activity. Use of on-line microcomputer techniques confirmed the ohmic current vs. voltage behaviour for all the single porin channels examined.  相似文献   

7.
We observed that wild-type Escherichia coli utilized a linear polyphosphate with a chain length of 100 phosphate residues (poly-P100) as the sole source of phosphate in growth medium. A mutation in the gene phoA of alkaline phosphatase or phoB, the positive regulatory gene, prevented growth in this medium. Since no alkaline phosphatase activity was detected outside the wild-type cells, the periplasmic presence of the enzyme was necessary for the degradation of polyphosphate. A 90% reduction in the activity of periplasmic acid phosphatase with a pH optimum of 2.5 (delta appA mutants) did not affect polyphosphate utilization. Of the porins analyzed (OmpC, OmpF, and PhoE), the phoB-inducible porin PhoE was not essential since its absence did not prevent growth. To study how poly-P100 diffused into the cells, we used high-resolution 31P nuclear magnetic resonance (31P NMR) spectroscopy. The results suggest that poly-P100 entered the periplasm and remained in equilibrium between the periplasm and the medium. When present individually, porins PhoE and OmpF facilitated a higher permeability for poly-P100 than porin OmpC did. The degradation of polyphosphate by intact cells of E. coli observed by 31P NMR showed a time-dependent increase in cellular phosphate and a decrease in polyphosphate concentration.  相似文献   

8.
J C Todt  E J McGroarty 《Biochemistry》1992,31(43):10479-10482
Porin is a channel-forming protein in the outer membrane of Gram-negative bacteria. In the previous paper (Todt et al., 1992), we showed that the pH induced a switch in the channel size in vitro for the porins OmpF, OmpC, and PhoE. In the results presented here, His21 of OmpC and OmpF from Escherichia coli was chemically modified with diethyl pyrocarbonate. Functional analysis of these modified porins at different pHs suggested that this histidine is involved in the pH-induced switch in channel size. Secondary structure analysis of porins at various pHs using Fourier transform infrared spectroscopy indicated that there was no global change in structure accompanying the pH-induced switch in channel size.  相似文献   

9.
Porin PhoE of the outer membrane of Escherichia coli was isolated and purified. Reconstitution experiments with lipid bilayer membranes showed that this protein formed pores which had a single channel conductance of 210 pS at 0.1 M KCl. The PhoE pores were obviously not voltage-controlled or regulated. In contrast to pores formed by the OmpF porin from E. coli the PhoE channel was found to be anion-selective at neutral pH. Chloride is about three to ten times more permeable through the pore than alkali ions. On the basis of the observed pH dependence of the permeability ratio of anions and cations, this anionic selectivity is explained by the assumption that the PhoE pore contains an excess of fixed positive charges.  相似文献   

10.
Pore-forming activity of OmpA protein of Escherichia coli.   总被引:16,自引:0,他引:16  
Escherichia coli outer membrane protein OmpA was purified to homogeneity, as a monomer, from a K12 derivative deficient in both OmpF and OmpC porins. When proteoliposomes reconstituted from the purified OmpA, phospholipids, and lithium dodecyl sulfate were tested for permeability to small molecules by osmotic swelling, it was found that OmpA produced apparently nonspecific diffusion channels that allowed the penetration of various solutes. The pore-forming activity was destroyed by the heat denaturation of the OmpA protein, and the use of an OmpA-deficient mutant showed that the activity was not caused by copurifying contaminants. The size of the OmpA channel, estimated by comparison of diffusion rates of solutes of different sizes, was rather similar to that of E. coli OmpF and OmpC porins, i.e. about 1 nm in diameter. The rate of penetration of L-arabinose caused by a given amount of OmpA protein, however, was about a hundredfold lower than the rate produced by the same amount of E. coli OmpF porin. The addition of large amounts of lithium dodecyl sulfate to the reconstitution mixture increased the permeability through the OmpA channel, apparently by facilitating the correct insertion of OmpA into the bilayer.  相似文献   

11.
Ion selectivity of gram-negative bacterial porins.   总被引:43,自引:15,他引:28       下载免费PDF全文
Twelve different porins from the gram-negative bacteria Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Yersinia pestis were reconstituted into lipid bilayer membranes. Most of the porins, except outer membrane protein P, formed large, water-filled, ion-permeable channels with a single-channel conductance between 1.5 and 6 nS in 1 M KCl. The ions used for probing the pore structure had the same relative mobilities while moving through the porin pore as they did while moving in free solution. Thus the single-channel conductances of the individual porins could be used to estimate the effective channel diameters of these porins, yielding values ranging from 1.0 to 2.0 nm. Zero-current potential measurements in the presence of salt gradients across lipid bilayer membranes containing individual porins gave results that were consistent with the conclusions drawn from the single-channel experiments. For all porins except protein P, the channels exhibited a greater cation selectivity for less mobile anions and a greater anion selectivity for less mobile cations, which again indicated that the ions were moving inside the pores in a fashion similar to their movement in the aqueous phase. Three porins, PhoE and NmpC of E. coli and protein P of P. aeruginosa, formed anion-selective pores. PhoE and NmpC were only weakly anion selective, and their selectivity was dependent on the mobility of the ions. In contrast, cations were unable to enter the selectivity filter of the protein P channel. This resulted in a high anion selectivity for all salts tested in this study. The other porins examined, including all of the known constitutive porins of the four gram-negative bacteria studied, were cation selective with a 3- to 40-fold preference for K+ ions over Cl- ions.  相似文献   

12.
We used patch clamp analysis to compare the electrophysiological behavior of two related porins from Escherichia coli, the anion-specific PhoE and the cation-selective OmpF. Outer membrane fractions were obtained from strains expressing just one of these porin types, and the channels were reconstituted into liposomes without prior purification. We show that the orientation of the reconstituted channels is not random and is the same for both PhoE and OmpF. Like cation-selective porins, PhoE shows fast and slow gating to closed levels of various amplitudes, testifying that the channels visit multiple functional states and behave as cooperative entities. The voltage-dependence of PhoE closure is asymmetric, but strikingly, occurs at voltages of inverse polarity from those promoting closures of OmpC and OmpF. Both slow kinetics and inverse voltage-dependence are removed when 70 amino acids from the N-terminal of OmpF are introduced into the homologous region of PhoE. This novel observation regarding the voltage-dependence of the two channel types, along with published results on PhoE and OmpF mutants, allows us to propose a molecular mechanism for voltage sensing and sensor charge movements in bacterial porins. It also offers new cues on the possible physiological relevance in bacteria of this common form of channel modulation.  相似文献   

13.
OmpC and OmpF, outer membrane porin proteins, are important in the maintenance of the cell surface structure of Escherichia coli cells [T. Nogami and S. Mizushima, J. Bacteriol., 156, 402 (1983)]. Mutants lacking both proteins are unstable and frequently revert or mutate to strains which either have regained one or both of the proteins or constitutively produce PhoE, another porin protein. In the present work, the structural importance of PhoE was studied in relation to OmpC. and OmpF. The strain devoid of both OmpC and OmpF was highly susceptible to Tris-HCl buffer at a concentration of 120 mm in terms of viability and cell structure. This strain was also susceptible to osmotic shock. In contrast, the strain possessing PhoE in place of OmpC/OmpF was as stable as the strain possessing OmpC/OmpF against these treatments. PhoE, like OmpC and OmpF, was assembled into a hexagonal lattice with lipopolysaccharide that covered the peptidoglycan sacculus. These results suggest that PhoE can take the place of OmpC/OmpF in the maintenance of the cell surface structure. The importance of porins in general in the maintenance of the cell structure is discussed.  相似文献   

14.
Outer membrane pore protein OmpC was identified as the receptor for the temperate Escherichia coli phage HK253hrk. The part of OmpC protein recognized by the phage was identified by using hybrid proteins in which parts of OmpC protein are replaced by the corresponding parts of the related PhoE protein. In contrast to other OmpC-specific phages, HK253hrk recognizes a part of OmpC within the C-terminal 50 amino acids of the protein. E. coli strains lysogenic for HK253hrk produce reduced amounts of OmpC protein, and produce a new pore protein instead. Expression of this new protein was temperature-dependent, i.e. low at 30 degrees C. The functioning of this new pore protein was characterized both in vivo by studying the uptake of beta-lactam antibodies and in vitro after reconstitution of the protein in black lipid films. Its effective pore size was larger than that of the OmpF pores of E. coli B. The new porin appears to be cation-selective. A comparison with the selectivity of the known OmpC and OmpF pores of E. coli showed that the new pore has a higher selectivity than OmpF but is less selective than OmpC. The new pore protein appears to function in E. coli K12 lysogens as the receptor for the phages HK187, HK189 and HK332.  相似文献   

15.
The inhibition of the anion-selective PhoE porin by ATP and of the cation-selective OmpF porin by polyamines has been previously documented. In the present study, we have extended the comparison of the inhibitor-porin pairs by investigating the effect of anions (ATP and aspartate) and positively charged polyamines (spermine and cadaverine) on both OmpF and PhoE with the patch-clamp technique, and by comparing directly the gating kinetics of the channels modulated by their respective substrates. The novel findings reported here are (1) that the activity of PhoE is completely unaffected by polyamines, and (2) that the kinetic changes induced by ATP on PhoE or polyamines on OmpF suggest different mechanisms of inhibition. ATP induces a high degree of flickering in the PhoE-mediated current and appears to behave as a blocker of ion flow during its presumed transport through PhoE. Polyamines modulate the kinetics of openings and closings of OmpF, in addition to promoting a blocker-like flickering activity. The strong correlation between sensitivity to inhibitors and ion selectivity suggests that some common molecular determinants are involved in these two properties and is in agreement with the hypothesis that polyamines bind inside the pore of cationic porins.  相似文献   

16.
Escherichia coli outer membrane protein K is a porin.   总被引:6,自引:5,他引:1       下载免费PDF全文
Protein K is an outer membrane protein found in pathogenic encapsulated strains of Escherichia coli. We present evidence here that protein K is structurally and functionally related to the E. coli K-12 porin proteins (OmpF, OmpC, and PhoE). Protein K was found to cross-react with antibody to OmpF protein and to share 8 out of 17 peptides in common with the OmpF protein. Strains that are OmpC porin- and OmpF porin- and contain protein K as their major outer membrane protein have increased rates of uptake of nutrients and a faster growth rate relative to the parental porin- strain. The protein K-containing strains are at least 1,000-fold more sensitive to colicins E2 and E3 than is the porin -deficient strain. These data suggest that protein K is a functional porin in E. coli. The porin function of protein K was also demonstrated in vitro, using black lipid membranes. Protein K increased the conductance in these membranes in discrete, uniform steps characteristic of channels with a size of about 2 nS.  相似文献   

17.
Osmotic regulation of PhoE porin synthesis in Escherichia coli.   总被引:2,自引:1,他引:1       下载免费PDF全文
In Escherichia coli, adaptation to hyperosmotic conditions alters the expression of the outer membrane porins OmpF and OmpC. The amount of PhoE porin, which is normally induced by phosphate deprivation, was greatly reduced in cells adapted to high-osmolarity conditions. Osmoregulation of PhoE operated independently of the activity of the PhoR phosphate sensor and did not involve cross-talk from the homologous osmosensor EnvZ. PhoE synthesis was partially restored by additional copies of the positive regulator phoB+ and by the osmoprotectant glycine betaine.  相似文献   

18.
J C Todt  W J Rocque  E J McGroarty 《Biochemistry》1992,31(43):10471-10478
Porin is a trimeric channel-forming protein in the outer membrane of Gram-negative bacteria. Functions of the porins OmpF, OmpC, and PhoE from Escherichia coli K12 were analyzed at various pHs. Preliminary results from bilayer lipid membrane and liposome swelling assays indicated that in vitro porin has at least two open-channel configurations with a small and a large size. The small channels were stabilized at low pH while the larger channels were detected under basic conditions. The size switch occurred over a very narrow range near neutral pH, and the two major open-channel configurations responded differently to variations in voltage. The presence of two or more pH-dependent substates of porin could explain the variability in pore diameter measured by others and suggests a more dynamic role for porin in the cell.  相似文献   

19.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

20.
Bacterial porins, which allow the passage of solutes across the outer bacterial membrane, are structurally well characterized. They therefore lend themselves to detailed studies of the determinants of ion flow through transmembraneous channels. In a comparative study, we have performed Brownian dynamics simulations to obtain statistically significant transfer efficiencies for cations and anions through matrix porin OmpF, osmoporin OmpK36, phosphoporin PhoE and two OmpF charge mutants.The simulations show that the electrostatic potential at the highly charged channel constriction serves to enhance ion permeability of either cations or anions, dependent on the type of porin. At the same time translocation of counterions is not severely impeded. At the constriction, cations and anions follow distinct trajectories, due to the segregation of basic and acidic protein residues.Simulated ion selectivity and relative conductance agree well with experimental values, and are dependent crucially on the charge constellation at the pore constriction. The experimentally observed decrease in ion selectivity and single channel conductance with increasing ionic strength is well reproduced and can be attributed to electrostatic shielding of the pore lining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号