首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cystic fibrosis patients suffer from chronic lung infection and inflammation due to the secretion of viscous sputum. Sputum viscosity is caused by extracellular DNA, some of which originates from the release of neutrophil extracellular traps (NETs). During NET formation neutrophil elastase (NE) partially processes histones to decondense chromatin. NE is abundant in CF sputum and is thought to contribute to tissue damage. Exogenous nucleases are a palliative treatment in CF as they promote sputum solubilization. We show that in a process reminiscent of NET formation, NE enhances sputum solubilization by cleaving histones to enhance the access of exogenous nucleases to DNA. In addition, we find that in Cf sputum NE is predominantly bound to DNA, which is known to downregulate its proteolytic activity and may restrict host tissue damage. The beneficial role of NE in CF sputum solubilization may have important implications for the development of CF therapies targeting NE.  相似文献   

2.
SLPI (secretory leucoprotease inhibitor) and elafin represent the archetypal members of the WFDC [WAP (whey acidic protein) four disulfide core] family of proteins, and were originally characterized as protease inhibitors but have since been shown to possess a wider repertoire of activities. These functions include antimicrobial and immunomodulatory properties, suggesting that these proteins may play key roles in the innate immune response, and indicate the potential to develop some of these proteins as novel therapeutics. Susceptibility to host and bacterial protease cleavage may, however, limit the efficacy of recombinant protein therapies in diseases with a high protease burden such as CF (cystic fibrosis) lung disease. To overcome this problem, further refinement of the native proteins will be required to provide effective treatment strategies.  相似文献   

3.
A number of serine, cysteine, metallo- and acid proteases were evaluated for their ability to proteolytically cleave the serine protease inhibitor trappin-2, also known as pre-elafin, and to release elafin from its precursor. None of the metalloproteases or acid proteases examined cleaved trappin-2, while serine and cysteine proteases preferentially cleaved trappin-2 within its non-inhibitory N-terminal moiety. Cathepsin L, cathepsin K, plasmin, trypsin and tryptase were able to release elafin by cleaving the Lys 38 -Ala 39 peptide bond in trappin-2. However, purified tryptase appeared to be efficient at releasing elafin. Incubation of trappin-2 with purified mast cells first challenged with anti-immunoglobulin E or calcium ionophore A23187 resulted in the rapid generation of elafin. This proteolytic release of elafin from trappin-2 was inhibited in the presence of a tryptase inhibitor, suggesting that this mast cell enzyme was involved in the process. Finally, ex vivo incubation of trappin-2 with sputum from cystic fibrosis patients indicated the production of a proteolytic immunoreactive fragment with the same mass as that of native elafin. This cleavage did not occur when preincubating the sputum with polyclonal antibodies directed against tryptase. Taken together, these findings indicate that tryptase could likely be involved in the maturation of trappin-2 into elafin under physiological conditions.  相似文献   

4.
Secretory leukocyte proteinase inhibitor (SLPI) is a serine proteinase inhibitor that is produced locally in the lung by cells of the submucosal bronchial glands and by nonciliated epithelial cells. Its main function appears to be the inhibition of neutrophil elastase (NE). Recently, NE was found to enhance SLPI mRNA levels while decreasing SLPI protein release in airway epithelial cells. Furthermore, glucocorticoids were shown to increase both constitutive and NE-induced SLPI mRNA levels. In addition to NE, stimulated neutrophils also release alpha-defensins. Defensins are small, antimicrobial polypeptides that are found in high concentrations in purulent secretions of patients with chronic airway inflammation. Like NE, defensins induce interleukin-8 production in airway epithelial cells. This induction is sensitive to inhibition by the glucocorticoid dexamethasone and is prevented in the presence of alpha(1)-proteinase inhibitor. The aim of the present study was to investigate the effect of defensins on the production of SLPI and the related NE inhibitor elafin/SKALP in primary bronchial epithelial cells (PBECs). Defensins significantly increase SLPI protein release by PBECs in a time- and dose-dependent fashion without affecting SLPI mRNA synthesis. In the presence of alpha(1)-proteinase inhibitor, the defensin-induced SLPI protein release is further enhanced, but no effect was observed on SLPI mRNA levels. Dexamethasone did not affect SLPI protein release from control or defensin-treated PBECs. In addition, we observed a constitutive release of elafin/SKALP by PBECs, but this was not affected by defensins. The present results suggest a role for defensins in the dynamic regulation of the antiproteinase screen in the lung at sites of inflammation.  相似文献   

5.
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).  相似文献   

6.
Proteolytic processing of laminin-332 by matrix metalloproteinase (MMP)-2 and MMP-14 has been shown to yield fragments that are promigratory for epithelial cells. During acute and chronic inflammation, proteases are elaborated by neutrophils and macrophages that can degrade basement membranes. We investigated the susceptibility of laminin-332 to degradation by the following neutrophil and macrophage proteases: neutrophil elastase (NE), cathepsin G, proteinase-3, and MMPs-2, -8, -9, and -12. Protease-specific differences were seen in the capacity to cleave the individual chains of laminin-332. NE and MMP-12 showed the greatest activity toward the gamma2 chain, generating a fragment similar in size to the gamma2x fragment generated by MMP-2. The digestion pattern of laminin-332 by degranulated neutrophils was nearly identical to that generated with NE alone. Digestion by supernatants of degranulated neutrophils was blocked by an inhibitor of NE, and NE-deficient neutrophils were essentially unable to digest laminin-332, suggesting that NE is the major neutrophil-derived protease that degrades laminin-332. In vivo, laminin gamma2 fragments were found in the bronchoalveolar lavage fluid of wild-type mice treated with lipopolysaccharide, whereas that obtained from NE-deficient mice showed a different cleavage pattern. In addition, NE cleaved a synthetic peptide derived from the region of human laminin gamma2 containing the MMP-2 cleavage site, suggesting that NE may generate laminin-332 fragments that are also promigratory. Both laminin-332 fragments generated by NE digestion and NE-digested laminin gamma2 peptide were found to be chemotactic for neutrophils. Collectively, these data suggest that degradation of laminin-332 by NE generates fragments with important biological activities.  相似文献   

7.
Viral lung infections increase susceptibility to subsequent bacterial infection. We questioned whether local lung administration of recombinant adenoviral vectors in the sheep would alter the susceptibility of the lung to subsequent challenge with bacterial lipopolysaccharide (LPS). We further questioned whether local lung expression of elafin, a locally produced alarm anti-LPS/anti-bacterial molecule, would modulate the challenge response. We established that adenoviral vector treatment primed the lung for an enhanced response to bacterial LPS. Whereas this local effect appeared to be independent of the transgene used (Ad-o-elafin or Ad-GFP), Ad-o-elafin treated sheep demonstrated a more profound lymphopenia in response to local lung administration of LPS. The local influence of elafin in modulating the response to LPS was restricted to maintaining neutrophil myeloperoxidase activity, and levels of alveolar macrophage and neutrophil phagocytosis at higher levels post-LPS. Adenoviral vector-bacterial synergism exists in the ovine lung and elafin expression modulates such synergism both locally and systemically.  相似文献   

8.
The ectodomain of the human transferrin receptor (TfR) is released as soluble TfR into the blood by cleavage within a stalk. The major cleavage site is located C-terminally of Arg-100; alternative cleavage sites are also present. Since the cleavage process is still unclear, we looked for proteases involved in TfR ectodomain release. In the supernatant of U937 histiocytic cells we detected alternatively cleaved TfR (at Glu-110). In membrane fractions of these cells we identified two distinct proteolytic activities responsible for TfR cleavage within the stalk at either Val-108 or Lys-95. Both activities could be inhibited by serine protease inhibitors, but not by inhibitors of any other class of proteases. Protein purification yielded a 28 kDa protein that generated the Val-108 terminus. The protease activity could be ascribed to neutrophil elastase according to the substrate specificity determined by amino acid substitution analysis of synthetic peptides, an inhibitor profile, the size of the protease and the use of specific antibodies. The results of analogous experiments suggest that the second activity is represented by another serine protease, cathepsin G. Thus, membrane-associated forms of neutrophil elastase and cathepsin G may be involved in alternative TfR shedding in U937 cells.  相似文献   

9.
Neutrophil proteinase-mediated lung tissue destruction is prevented by inhibitors, including elafin and its precursor, trappin. We wanted to establish whether neutrophil-derived oxidants might impair the inhibitory function of these molecules. Myeloperoxidase/H(2)O(2) and N-chlorosuccinimide oxidation of the inhibitors was checked by mass spectrometry and enzymatic methods. Oxidation significantly lowers the affinities of the two inhibitors for neutrophil elastase (NE) and proteinase 3 (Pr3). This decrease in affinity is essentially caused by an increase in the rate of inhibitory complex dissociation. Oxidized elafin and trappin have, however, reasonable affinities for NE (K(i) = 4.0-9.2 x 10(-9) M) and for Pr3 (K(i) = 2.5-5.0 x 10(-8) M). These affinities are theoretically sufficient to allow the oxidized inhibitors to form tight binding complexes with NE and Pr3 in lung secretions where their physiological concentrations are in the micromolar range. Yet, they are unable to efficiently inhibit the elastolytic activity of the two enzymes. At their physiological concentration, fully oxidized elafin and trappin do not inhibit more than 30% of an equimolar concentration of NE or Pr3. We conclude that in vivo oxidation of elafin and trappin strongly impairs their activity. Inhibitor-based therapy of inflammatory lung diseases must be carried out using oxidation-resistant variants of these molecules.  相似文献   

10.
Direct comparisons of human (h) and murine (m) neutrophil elastase (NE) and proteinase 3 (PR3) are important for the understanding and interpretation of inflammatory and PR3-related autoimmune processes investigated in wild-type-, mNE- and mPR3/mNE knockout mice. To this end, we purified recombinant mPR3 and mNE expressed in HMC1 and 293 cells and compared their biophysical properties, proteolytic activities and susceptibility to inhibitors with those of their human homologues, hPR3 and hNE. Significant species differences in physico-chemical properties, substrate specificities and enzyme kinetics towards synthetic peptide substrates, oxidized insulin B chain, and fibrinogen were detected. MeOSuc-AAPV-pNA and Suc-AAPV-pNA were hydrolyzed more efficiently by mPR3 than hPR3, but enzymatic activities of mNE and hNE were very similar. Fibrinogen was cleaved much more efficiently by mPR3 than by hPR3. All four proteases were inhibited by alpha(1)-antitrypsin and elafin. Eglin C inihibited mNE, hNE, mPR3, but not hPR3. SLPI inhibited both NEs, but neither PR3. The custom-designed hNE inhibitor, Val(15)-aprotinin, is a poor inhibitor for mNE. In conclusion, appropriate interpretation of experiments in murine models requires individual species-specific assessment of neutrophil protease function and inhibition.  相似文献   

11.
Elafin and its precursor, trappin-2 or pre-elafin, are specific endogenous inhibitors of human neutrophil elastase and proteinase 3 but not of cathepsin G. Both inhibitors belong, together with secretory leukocyte protease inhibitor, to the chelonianin family of canonical protease inhibitors of serine proteases. A cDNA coding either elafin or its precursor, trappin-2, was fused in frame with yeast alpha-factor cDNA and expressed in the Pichia pastoris yeast expression system. Full-length elafin or full-length trappin-2 were secreted into the culture medium with high yield, indicating correct processing of the fusion proteins by the yeast KEX2 signal peptidase. Both recombinant inhibitors were purified to homogeneity from concentrated culture medium by one-step cationic exchange chromatography and characterized by N-terminal amino acid sequencing, Western blot and kinetic studies. Both recombinant elafin and trappin-2 were found to be fast-acting inhibitors of pancreatic elastase, neutrophil elastase and proteinase 3 with k(ass) values of 2-4 x 10(6) m(-1).s(-1), while dissociation rate constants k(diss) were found to be in the 10(-4) s(-1) range, indicating low reversibility of the complexes. The equilibrium dissociation constant K(i) for the interaction of both recombinant inhibitors with their target enzymes was either directly measured for pancreatic elastase or calculated from k(ass) and k(diss) values for neutrophil elastase and proteinase 3. K(i) values were found to be in the 10(-10) molar range and virtually identical for both inhibitors. Based on the kinetic parameters determined here, it may be concluded that both recombinant elafin and trappin-2 may act as potent anti-inflammatory molecules and may be of therapeutic potential in the treatment of various inflammatory lung diseases.  相似文献   

12.
A number of serine proteases, matrix metalloproteases, and cysteine proteases were evaluated for their ability to cleave and inactivate the antiprotease, secretory leucoprotease inhibitor (SLPI). None of the serine proteases or the matrix metalloproteases examined cleaved the SLPI protein. However, incubation with cathepsins B, L, and S resulted in the cleavage and inactivation of SLPI. All three cathepsins initially cleaved SLPI between residues Thr(67) and Tyr(68). The proteolytic cleavage of SLPI by all three cathepsins resulted in the loss of the active site of SLPI and the inactivation of SLPI anti-neutrophil elastase capacity. Cleavage and inactivation were catalytic with respect to the cathepsins, so that the majority of a 400-fold excess of SLPI was inactivated within 15 min by cathepsins L and S. Analysis of epithelial lining fluid samples from individuals with emphysema indicated the presence of cleaved SLPI in these samples whereas only intact SLPI was observed in control epithelial lining fluid samples. Active cathepsin L was shown to be present in emphysema epithelial lining fluid and inhibition of this protease prevented the cleavage of recombinant SLPI added to emphysema epithelial lining fluid. Taken together with previous data that demonstrates that cathepsin L inactivates alpha(1)-antitrypsin, these findings indicate the involvement of cathepsins in the diminution of the lung antiprotease screen possibly leading to lung destruction in emphysema.  相似文献   

13.
The alveolar epithelium is lined by surfactant, a lipoprotein complex that both reduces surface tension and mediates several innate immune functions including bacterial aggregation, alteration of alveolar macrophage function, and regulation of bacterial clearance. Surfactant protein-D (SP-D) participates in several of these immune functions, and specifically it enhances the clearance of the pulmonary pathogen Pseudomonas aeruginosa, a common cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa secretes a variety of virulence factors including elastase, a zinc-metalloprotease, which degrades both SP-A and SP-D. Here we show that SP-D is cleaved by elastase to produce a stable 35-kDa fragment in a time-, temperature-, and dose-dependent manner. Degradation is inhibited by divalent metal cations, a metal chelator, and the elastase inhibitor, phosphoramidon. Sequencing the SP-D degradation products localized the major cleavage sites to the C-terminal lectin domain. The SP-D fragment fails to bind or aggregate bacteria that are aggregated by intact SP-D. SP-D fragment is observed when normal rat bronchoalveolar lavage (BAL) is treated with Pseudomonas aeruginosa elastase, and SP-D fragments are present in the BAL of CF lung allograft patients. These data show that degradation of SP-D occurs in the BAL environment and that degradation eliminates many normal immune functions of SP-D.  相似文献   

14.
A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.  相似文献   

15.
Elafin (elastase-specific inhibitor) is a low molecular weight inhibitor of neutrophil elastase which is secreted in the lung. Using synthetic peptides corresponding to full-length elafin (H2N-1AVT.....95Q-OH), the NH2-terminal domain (H2N-1AVT.....50K-OH) and the COOH-terminal domain (H2N-51PGS.....95Q-OH), we demonstrate that elafin's anti-elastase activity resides exclusively in the COOH-terminus. Several characteristics of elafin suggest potential anti-microbial activity. The anti-microbial activity of elafin, and of its two structural domains, was tested against the respiratory pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Elafin killed both bacteria efficiently, with 93% killing of P. aeruginosa by 2.5 microM elafin and 48% killing of S. aureus by 25 microM elafin. For both organisms, full-length elafin was required to optimise bacterial killing. These findings represent the first demonstration of co-existent anti-proteolytic and anti-microbial functions for elafin.  相似文献   

16.
Elafin, an antiprotease, is likely to protect pulmonary epithelial cells from inflammatory damages. We aimed to explore the molecule mechanisms of recombinant human elafin on protecting A549 cells integrity against inflammatory assault. We transfected A549 airway epithelial cells with eukaryotic expression vector pEGFP-N1-Elafin and negative control vector pEGFP-N1, respectively. Cells were co-incubated with polymorphonuclear neutrophils (PMN) and then were stimulated with lipopolysaccharide (LPS). Results revealed that, in pEGFP-N1-Elafin transfected cells, neutrophil elastase (NE) activity significantly decreased after LPS stimulation, accompanied with elevated elafin mRNA level and protein production, whereas in cells transfected with pEGFP-N1, NE activity was higher and elafin expression was lower, compared with pEGFP-N1-Elafin transfected group (P < 0.05). In pEGFP-N1 transfected cells, LPS suppressed tight junctions protein zonula occludens-1 (ZO-1) production, while in recombinant pEGFP-N1-Elafin cells, LPS did not cause significantly decrease of ZO-1, compared with normal control cells. LPS stimulation also significantly weakened the collagen adhesion capability of pEGFP-N1 transfected cells (P < 0.01), but there was no significant difference in recombinant pEGFP-N1-Elafin cells (P > 0.05). These results suggest that elafin can maintain airway epithelium integrity by protecting airway epithelial cells and enhancing the anti-inflammatory capability of airway.  相似文献   

17.
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin‐2 are endogeneous low‐molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol‐based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin‐2 variant, trappin‐2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin‐2 A62L are tight‐binding inhibitors of all three NSPs with subnanomolar Kis, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane‐bound forms of all three NSPs. The trappin‐2 A62L and elafin‐SLPI chimeras, like wild‐type elafin and trappin‐2, can be covalently cross‐linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti‐inflammatory agents.  相似文献   

18.
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease associated with autoantibodies against the hemidesmosomal proteins BP180 and BP230. In the IgG passive transfer model of BP, blister formation is triggered by anti-BP180 IgG and depends on complement activation, mast cell degranulation, and neutrophil recruitment. Mice lacking neutrophil elastase (NE) do not develop experimental BP. Here, we demonstrated that NE degrades recombinant mouse BP180 within the immunodominant extracellular domain at amino acid positions 506 and 561, generating peptide p561 and peptide p506. Peptide p561 is chemotactic for neutrophils both in vitro and in vivo. Local injection of NE into B6 mice recruits neutrophils to the skin, and neutrophil infiltration is completely blocked by co-injection with the NE inhibitor α1-proteinase inhibitor. More importantly, NE directly cleaves BP180 in mouse and human skin, as well as the native human BP180 trimer molecule. These results demonstrate that (i) NE directly damages the extracellular matrix and (ii) NE degradation of mouse BP180 generates neutrophil chemotactic peptides that amplify disease severity at the early stage of the disease.  相似文献   

19.
Background/aimsElastase inhibitors reverse elastin degradation and abnormal alveologenesis and attenuate the lung structural abnormalities induced by mechanical ventilation with O2-rich gas. The potential of these molecules to improve endothelial function and to ameliorate severe bronchopulmonary dysplasia (BPD) during lung development is not yet understood. We sought to determine whether the intratracheal treatment of newborn mice with the elastase inhibitor elafin would prevent hyperoxia-induced lung elastin degradation and the cascade of events that cause abnormal alveologenesis.MethodsNewborn mice were exposed to 85% O2 for 3, 7, 14 or 21 days. Recombinant human elafin was administered by intratracheal instillation from the first day every two days for 20 days. We next used morphometric analyses, quantitative RT-PCR, immunostaining, Western blotting, and ELISA methods to assess the key variables involved in elastogenesis disruption and the potential signaling pathways noted below in recombinant human elafin-treated mouse pups that had been exposed to 85% O2.ResultsWe found that impaired alveolar development and aberrant elastin production were associated with elevations in whole lung elastase levels in 85% O2-exposed lungs. Elafin attenuated the structural disintegration that developed in the hyperoxia-damaged lungs. Furthermore, elafin prevented the elastin degradation, neutrophil influx, activation of TGF-β1 and apoptosis caused by 85% O2 exposure.ConclusionsPulmonary elastase plays an important role in disrupting elastogenesis during O2-induced damage, which is the result of a pulmonary inflammatory response. Elafin prevents these changes by inhibiting elastase and the TGF-β1 signalling cascade and may be a new therapeutic target for preventing O2-induced lung injury in neonates.  相似文献   

20.
During acute pulmonary infection, tissue injury may be secondary to the effects of bacterial products or to the effects of the host inflammatory response. An attractive strategy for tissue protection in this setting would combine antimicrobial activity with inhibition of human neutrophil elastase (HNE), a key effector of neutrophil-mediated tissue injury. We postulated that genetic augmentation of elafin (an endogenous inhibitor of HNE with intrinsic antimicrobial activity) could protect the lung against acute inflammatory injury without detriment to host defense. A replication-deficient adenovirus encoding elafin cDNA significantly protected A549 cells against the injurious effects of both HNE and whole activated human neutrophils in vitro. Intratracheal replication-deficient adenovirus encoding elafin cDNA significantly protected murine lungs against injury mediated by Pseudomonas aeruginosa in vivo. Genetic augmentation of elafin therefore has the capacity to protect the lung against the injurious effects of both bacterial pathogens resistant to conventional antibiotics and activated neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号