首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Presenilin, the catalytic component of the gamma-secretase complex, type IV prepilin peptidases, and signal peptide peptidase (SPP) are the founding members of the family of intramembrane-cleaving GXGD aspartyl proteases. SPP-like (SPPL) proteases, such as SPPL2a, SPPL2b, SPPL2c, and SPPL3, also belong to the GXGD family. In contrast to gamma-secretase, for which numerous substrates have been identified, very few in vivo substrates are known for SPP and SPPLs. Here we demonstrate that Bri2 (Itm2b), a type II-oriented transmembrane protein associated with familial British and Danish dementia, undergoes regulated intramembrane proteolysis. In addition to the previously described ectodomain processing by furin and related proteases, we now describe that the Bri2 protein, similar to gamma-secretase substrates, undergoes an additional cleavage by ADAM10 in its ectodomain. This cleavage releases a soluble variant of Bri2, the BRICHOS domain, which is secreted into the extracellular space. Upon this shedding event, a membrane-bound Bri2 N-terminal fragment remains, which undergoes intramembrane proteolysis to produce an intracellular domain as well as a secreted low molecular weight C-terminal peptide. By expressing all known SPP/SPPL family members as well as their loss of function variants, we demonstrate that selectively SPPL2a and SPPL2b mediate the intramembrane cleavage, whereas neither SPP nor SPPL3 is capable of processing the Bri2 N-terminal fragment.  相似文献   

2.
Regulated intramembrane proteolysis is a widely accepted concept describing the processing of various transmembrane proteins via ectodomain shedding followed by an intramembrane cleavage. The resulting cleavage products can be involved in reverse signaling. Presenilins, which constitute the active center of the γ-secretase complex, signal peptide peptidase (SPP), and its homologues, the SPP-like (SPPL) proteases are members of the family of intramembrane-cleaving aspartyl proteases of the GXGD-type. We recently demonstrated that Bri2 (itm2b) is a substrate for regulated intramembrane proteolysis by SPPL2a and SPPL2b. Intramembrane cleavage of Bri2 is triggered by an initial shedding event catalyzed by A Disintegrin and Metalloprotease 10 (ADAM10). Additionally primary sequence determinants within the intracellular domain, the transmembrane domain and the luminal juxtamembrane domain are required for efficient cleavage of Bri2 by SPPL2b. Using mutagenesis and circular dichroism spectroscopy we now demonstrate that a high α-helical content of the Bri2 transmembrane domain (TMD) reduces cleavage efficiency of Bri2 by SPPL2b, while the presence of a GXXXG dimerization motif influences the intramembrane cleavage only to a minor extent. Surprisingly, only one of the four conserved intramembrane glycine residues significantly affects the secondary structure of the Bri2 TMD and thereby its intramembrane cleavage. Other glycine residues do not influence the α-helical content of the transmembrane domain nor its intramembrane processing.  相似文献   

3.
The sequential processing of single pass transmembrane proteins via ectodomain shedding followed by intramembrane proteolysis is involved in a wide variety of signaling processes, as well as maintenance of membrane protein homeostasis. Here we report that the recently identified frontotemporal lobar degeneration risk factor TMEM106B undergoes regulated intramembrane proteolysis. We demonstrate that TMEM106B is readily processed to an N-terminal fragment containing the transmembrane and intracellular domains, and this processing is dependent on the activities of lysosomal proteases. The N-terminal fragment is further processed into a small, rapidly degraded intracellular domain. The GxGD aspartyl proteases SPPL2a and, to a lesser extent, SPPL2b are responsible for this intramembrane cleavage event. Additionally, the TMEM106B paralog TMEM106A is also lysosomally localized; however, it is not a specific substrate of SPPL2a or SPPL2b. Our data add to the growing list of proteins that undergo intramembrane proteolysis and may shed light on the regulation of the frontotemporal lobar degeneration risk factor TMEM106B.  相似文献   

4.
Signal peptide peptidase (SPP), its homologs, the SPP-like proteases SPPL2a/b/c and SPPL3, as well as presenilin, the catalytic subunit of the γ-secretase complex, are intramembrane-cleaving aspartyl proteases of the GxGD type. In this study, we identified the 18-kDa leader peptide (LP18) of the foamy virus envelope protein (FVenv) as a new substrate for intramembrane proteolysis by human SPPL3 and SPPL2a/b. In contrast to SPPL2a/b and γ-secretase, which require substrates with an ectodomain shorter than 60 amino acids for efficient intramembrane proteolysis, SPPL3 cleaves mutant FVenv lacking the proprotein convertase cleavage site necessary for the prior shedding. Moreover, the cleavage product of FVenv generated by SPPL3 serves as a new substrate for consecutive intramembrane cleavage by SPPL2a/b. Thus, human SPPL3 is the first GxGD-type aspartyl protease shown to be capable of acting like a sheddase, similar to members of the rhomboid family, which belong to the class of intramembrane-cleaving serine proteases.  相似文献   

5.
Homologues of signal peptide peptidase (SPPLs) are putative aspartic proteases that may catalyse regulated intramembrane proteolysis of type II membrane-anchored signalling factors. Here, we show that four human SPPLs are each sorted to a different compartment of the secretory pathway. We demonstrate that SPPL2a and SPPL2b, which are sorted to endosomes and the plasma membrane, respectively, are functional proteases that catalyse intramembrane cleavage of tumour necrosis factor alpha (TNFalpha). The two proteases promoted the release of the TNFalpha intracellular domain, which in turn triggers expression of the pro-inflammatory cytokine interleukin-12 by activated human dendritic cells. Our study reveals a critical function for SPPL2a and SPPL2b in the regulation of innate and adaptive immunity.  相似文献   

6.
Signal peptide peptidase (SPP) is an unusual aspartyl protease that mediates clearance of signal peptides by proteolysis within the endoplasmic reticulum (ER). Like presenilins, which provide the proteolytically active subunit of the gamma-secretase complex, SPP contains a critical GXGD motif in its C-terminal catalytic center. Although SPP is known to be an aspartyl protease of the GXGD type, several presenilin homologues/SPP-like proteins (PSHs/SPPL) of unknown function have been identified by data base searches. We now investigated the subcellular localization and a putative proteolytic activity of PSHs/SPPLs in cultured cells and in an in vivo model. We demonstrate that SPPL2b is targeted through the secretory pathway to endosomes/lysosomes, whereas SPP and SPPL3 are restricted to the ER. As suggested by the differential subcellular localization of SPPL2b compared with SPP and SPPL3, we found distinct phenotypes upon antisense gripNA-mediated knockdown in zebrafish. spp and sppl3 knockdowns in zebrafish result in cell death within the central nervous system, whereas reduction of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein. Moreover, expression of D/A mutations of the putative C-terminal active sites of spp, sppl2, and sppl3 produced phenocopies of the respective knockdown phenotypes. Thus, our data suggest that all investigated PSHs/SPPLs are members of the novel family of GXGD aspartyl proteases. Furthermore, SPPL2b is shown to be the first member of the SPP/PSH/SPPL family that is not located within the ER but in endosomal/lysosomal vesicles.  相似文献   

7.
Presenilin (PS)/gamma-secretase-mediated intramembranous proteolysis of amyloid precursor protein produces amyloid beta (Abeta) peptides in which Abeta species of different lengths are generated through multiple cleavages at the gamma-, zeta-, and epsilon-sites. An increased Abeta42/Abeta40 ratio is a common characteristic of most cases of familial Alzheimer disease (FAD)-linked PS mutations. However, the molecular mechanisms underlying amyloid precursor protein proteolysis leading to increased Abeta42/Abeta40 ratios still remain unclear. Here, we report our findings on the enzymatic analysis of gamma-secretase derived from I213T mutant PS1-expressing PS1/PS2-deficient (PS(-/-)) cells and from the brains of I213T mutant PS1 knock-in mice. Kinetics analyses revealed that the FAD mutation reduced de novo Abeta generation, suggesting that mutation impairs the total catalytic rate of gamma-secretase. Analysis of each Abeta species revealed that the FAD mutation specifically reduced Abeta40 levels more drastically than Abeta42 levels, leading to an increased Abeta42/Abeta40 ratio. By contrast, the FAD mutation increased the generation of longer Abeta species such as Abeta43, Abeta45, and >Abeta46. These results were confirmed by analyses of gamma-secretase derived from I213T knock-in mouse brains, in which the reduction of de novo Abeta generation was mutant allele dose-dependent. Our findings clearly indicate that the mechanism underlying the increased Abeta42/Abeta40 ratio observed in cases of FAD mutations is related to the differential inhibition of gamma-site cleavage reactions, in which the reaction producing Abeta40 is subject to more inhibition than that producing Abeta42. Our results also provide novel insight into how enhancing the generation of longer Abetas may contribute to Alzheimer disease onset.  相似文献   

8.
Gamma-secretase and signal peptide peptidase (SPP) are unusual GxGD aspartyl proteases, which mediate intramembrane proteolysis. In addition to SPP, a family of SPP-like proteins (SPPLs) of unknown function has been identified. We demonstrate that SPPL2b utilizes multiple intramembrane cleavages to liberate the intracellular domain of tumor necrosis factor alpha (TNFalpha) into the cytosol and the carboxy-terminal counterpart into the extracellular space. These findings suggest common principles for regulated intramembrane proteolysis by GxGD aspartyl proteases.  相似文献   

9.
10.
11.
Presenilins (PS1 and PS2) are supposed to be unusual aspartic proteases and components of the gamma-secretase complex regulating cleavage of type I proteins. Multiple mutations in PS1 are a major cause of familial early-onset Alzheimer's disease (AD). We and others recently identified PS-related families of proteins (IMPAS/PSH/signal peptide peptidases (SPP)). The functions of these proteins are yet to be determined. We found that intramembrane protease-associated or intramembrane protease aspartic protein Impas 1 (IMP1)/SPP induces intramembranous cleavage of PS1 holoprotein in cultured cells coexpressing these proteins. Mutations in evolutionary invariant sites in hIMP1 or specific gamma-secretase inhibitors abolish the hIMP1-mediated endoproteolysis of PS1. In contrast, neither AD-like mutations in hIMP1 nor in PS1 substrate abridge the PS1 cleavage. The data suggest that IMP1 is a bi-aspartic polytopic protease capable of cleaving transmembrane precursor proteins. These data, to our knowledge, are a first observation that a multipass transmembrane protein or the integral protease per se may be a primary substrate for an intramembranous proteolysis.  相似文献   

12.
Amyloid beta-protein (Abeta), the major component of cerebral plaques associated with Alzheimer disease, is derived from amyloid beta-protein precursor (APP) through sequential proteolytic cleavage involving beta- and gamma-secretase. The intramembrane cleavage of APP by gamma-secretase occurs at two major sites, gamma and epsilon, although the temporal and/or mechanistic relationships between these cleavages remain unknown. In our attempt to address this issue, we uncovered an important regulatory role for the APP luminal juxtamembrane domain. We demonstrated in cell-based assays that domain replacements in this region can greatly reduce secreted Abeta resulting from gamma-cleavage without affecting the epsilon-cleavage product. This Abeta reduction is likely due to impaired proteolysis at the gamma-cleavage site. Further analyses with site-directed mutagenesis identified two juxtamembrane residues, Lys-28 and Ser-26 (Abeta numbering), as the critical determinants for efficient intramembrane proteolysis at the gamma-site. Consistent with the growing evidence that epsilon-cleavage of APP precedes gamma-processing, longer Abeta species derived from the gamma-cleavage-deficient substrates were detected intracellularly. These results indicate that the luminal juxtamembrane region of APP is an important regulatory domain that modulates gamma-secretase-dependent intramembrane proteolysis, particularly in differentiating gamma- and epsilon-cleavages.  相似文献   

13.
The presenilin (PS)/gamma-secretase complex, which contains not only PS but also Aph-1, PEN-2, and nicastrin, mediates proteolysis of the transmembrane domain of beta-amyloid protein precursor (betaAPP). Intramembrane proteolysis occurs at the interface between the membrane and cytosol (epsilon-site) and near the middle of the transmembrane domain (gamma-site), generating the betaAPP intracellular domain (AICD) and Alzheimer disease-associated Abeta, respectively. Both cleavage sites exhibit some diversity. Changes in the precision of gamma-cleavage, which potentially results in secretion of pathogenic Abeta42, have been intensively studied, while those of epsilon-cleavage have not. Although a number of PS-associated factors have been identified, it is unclear whether any of them physiologically regulate the precision of cleavage by PS/gamma-secretase. Moreover, there is currently no clear evidence of whether PS/gamma-secretase function differs according to the subcellular site. Here, we show that endocytosis affects the precision of PS-dependent epsilon-cleavage in cell culture. Relative production of longer AICDepsilon49 increases on the plasma membrane, whereas that of shorter AICDepsilon51 increases on endosomes; however, this occurs without a concomitant major change in the precision of cleavage at gamma-sites. Moreover, very similar changes in the precision of epsilon-cleavage are induced by alteration of the pH. Our findings demonstrate that the precision of epsilon-cleavage by PS/gamma-secretase changes depending upon the conditions and the subcellular location. These results suggest that the precision of cleavage by the PS/gamma-secretase complex may be physiologically regulated by the subcellular location and conditions.  相似文献   

14.
Gamma-secretase cleaves the transmembrane domain of beta-amyloid precursor protein at multiple sites. These are referred to as gamma-, zeta-, and epsilon-cleavages. We showed previously that DAPT, a potent dipeptide gamma-secretase inhibitor, caused differential accumulations of longer amyloid beta-proteins (Abetas) (Abeta43 and Abeta46) in CHO cells that are induced to express the beta C-terminal fragment (CTF). To learn more about the cleavage mechanism by gamma-secretase, CHO cell lines coexpressing betaCTF and wild-type or mutant presenilin (PS) 1/2 were generated and treated with DAPT. In all cell lines treated with DAPT, as the levels of Abeta40 decreased, Abeta46 accumulated to varying extents. In wild-type PS1 or M146L mutant PS1 cells, substantial amounts of Abeta43 and Abeta46 accumulated. In contrast, this was not the case with wild-type PS2 cells. In M233T mutant PS1 cells, significant amounts of Abeta46 and Abeta48 accumulated differentially, whereas in N141I mutant PS2 cells, large amounts of Abeta45 accumulated concomitantly with a large decrease in Abeta42 levels. Most interestingly, in G384A mutant PS1 cells, there were no significant accumulations of longer Abetas except for Abeta46. Abeta40 was very susceptible to DAPT, but other Abetas were variably resistant. Complicated suppression and accumulation patterns by DAPT may be explained by stepwise processing of betaCTF from a zeta- or epsilon-cleavage site to a gamma-cleavage site and its preferential suppression of gamma-cleavage over zeta- or epsilon-cleavage.  相似文献   

15.
Numerous membrane-bound proteins undergo regulated intramembrane proteolysis. Regulated intramembrane proteolysis is initiated by shedding, and the remaining stubs are further processed by intramembrane-cleaving proteases (I-CLiPs). Neuregulin 1 type III (NRG1 type III) is a major physiological substrate of β-secretase (β-site amyloid precursor protein-cleaving enzyme 1 (BACE1)). BACE1-mediated cleavage is required to allow signaling of NRG1 type III. Because of the hairpin nature of NRG1 type III, two membrane-bound stubs with a type 1 and a type 2 orientation are generated by proteolytic processing. We demonstrate that these stubs are substrates for three I-CLiPs. The type 1-oriented stub is further cleaved by γ-secretase at an ϵ-like site five amino acids N-terminal to the C-terminal membrane anchor and at a γ-like site in the middle of the transmembrane domain. The ϵ-cleavage site is only one amino acid N-terminal to a Val/Leu substitution associated with schizophrenia. The mutation reduces generation of the NRG1 type III β-peptide as well as reverses signaling. Moreover, it affects the cleavage precision of γ-secretase at the γ-site similar to certain Alzheimer disease-associated mutations within the amyloid precursor protein. The type 2-oriented membrane-retained stub of NRG1 type III is further processed by signal peptide peptidase-like proteases SPPL2a and SPPL2b. Expression of catalytically inactive aspartate mutations as well as treatment with 2,2′-(2-oxo-1,3-propanediyl)bis[(phenylmethoxy)carbonyl]-l-leucyl-l-leucinamide ketone inhibits formation of N-terminal intracellular domains and the corresponding secreted C-peptide. Thus, NRG1 type III is the first protein substrate that is not only cleaved by multiple sheddases but is also processed by three different I-CLiPs.  相似文献   

16.
17.
Biochemical and genetic studies have revealed that the presenilins interact with several proteins and are involved in the regulated intramembrane proteolysis of numerous type 1 membrane proteins, thereby linking presenilins to a range of cellular processes. In this study, we report the characterization of a highly conserved tumor necrosis factor receptor-associated factor-6 (TRAF6) consensus-binding site within the hydrophilic loop domain of presenilin-1 (PS-1). In coimmunoprecipitation studies we indicate that presenilin-1 interacts with TRAF6 and interleukin-1 receptor-associated kinase 2. Substitution of presenilin-1 residues Pro-374 and Glu-376 by site-directed mutagenesis greatly reduces the ability of PS1 to associate with TRAF6. By studying these interactions, we also demonstrate that the interleukin-1 receptor type 1 (IL-1R1) undergoes intramembrane proteolytic processing, mediated by presenilin-dependent gamma-secretase activity. A metalloprotease-dependent proteolytic event liberates soluble IL-1R1 ectodomain and produces an approximately 32-kDa C-terminal domain. This IL-1R1 C-terminal domain is a substrate for subsequent gamma-secretase cleavage, which generates an approximately 26-kDa intracellular domain. Specific pharmacological gamma-secretase inhibitors, expression of dominant negative presenilin-1, or presenilin deficiency independently inhibit generation of the IL-1R1 intracellular domain. Attenuation of gamma-secretase activity also impairs responsiveness to IL-1beta-stimulated activation of the MAPKs and cytokine secretion. Thus, TRAF6 and interleukin receptor-associated kinase 2 are novel binding partners for PS1, and IL-1R1 is a new substrate for presenilin-dependent gamma-secretase cleavage. These findings also suggest that regulated intramembrane proteolysis may be a control mechanism for IL-1R1-mediated signaling.  相似文献   

18.
Presenilin is implicated in the pathogenesis of Alzheimer's disease. It is thought to constitute the catalytic subunit of the gamma-secretase complex that catalyzes intramembrane cleavage of beta-amyloid precursor protein, the last step in the generation of amyloidogenic Abeta peptides. The latter are major constituents of amyloid plaques in the brain of Alzheimer's disease patients. Inhibitors of gamma-secretase are considered potential therapeutics for the treatment of this disease because they prevent production of Abeta peptides. Recently, we discovered a family of presenilin-type aspartic proteases. The founding member, signal peptide peptidase, catalyzes intramembrane cleavage of distinct signal peptides in the endoplasmic reticulum membrane of animals. In humans, the protease plays a crucial role in the immune system. Moreover, it is exploited by the hepatitis C virus for the processing of the structural components of the virion and hence is an attractive target for anti-infective intervention. Signal peptide peptidase and presenilin share identical active site motifs and both catalyze intramembrane proteolysis. These common features let us speculate that gamma-secretase inhibitors directed against presenilin may also inhibit signal peptide peptidase. Here we demonstrate that some of the most potent known gamma-secretase inhibitors efficiently inhibit signal peptide peptidase. However, we found compounds that showed higher specificity for one or the other protease. Our findings highlight the possibility of developing selective inhibitors aimed at reducing Abeta generation without affecting other intramembrane-cleaving aspartic proteases.  相似文献   

19.
Gamma-secretase is a member of an unusual class of proteases with intramembrane catalytic sites. This enzyme cleaves many type I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP) and the Notch receptor. Biochemical and genetic studies have identified four membrane proteins as components of gamma-secretase: heterodimeric presenilin (PS) composed of its N- and C-terminal fragments (PS-NTF/CTF), a mature glycosylated form of nicastrin (NCT), Aph-1, and Pen-2. Recent data from studies in Drosophila, mammalian, and yeast cells suggest that PS, NCT, Aph-1, and Pen-2 are necessary and sufficient to reconstitute gamma-secretase activity. However, many unresolved issues, in particular the possibility of other structural or regulatory components, would be resolved by actually purifying the enzyme. Here, we report a detailed, multistep purification procedure for active gamma-secretase and an initial characterization of the purified protease. Extensive mass spectrometry of the purified proteins strongly suggests that PS-NTF/CTF, mNCT, Aph-1, and Pen-2 are the components of active gamma-secretase. Using the purified gamma-secretase, we describe factors that modulate the production of specific Abeta species: (1) phosphatidylcholine and sphingomyelin dramatically improve activity without changing cleavage specificity within an APP substrate; (2) increasing CHAPSO concentrations from 0.1 to 0.25% yields a approximately 100% increase in Abeta42 production; (3) exposure of an APP-based recombinant substrate to 0.5% SDS modulates cleavage specificity from a disease-mimicking pattern (high Abeta42/43) to a physiological pattern (high Abeta40); and (4) sulindac sulfide directly and preferentially decreases Abeta42 cleavage within the purified complex. Taken together, our results define a procedure for purifying active gamma-secretase and suggest that the lipid-mediated conformation of both enzyme and substrate regulate the production of the potentially neurotoxic Abeta42 and Abeta43 peptides.  相似文献   

20.
Previously, we reported that mutations in presenilin 1 (PS1) increased the intracellular levels of amyloid beta-protein (Abeta)42. However, it is still not known at which cellular site or how PS1 mutations exert their effect of enhancing Abeta42-gamma-secretase cleavage. In this study, to clarify the molecular mechanisms underlying this enhancement of Abeta42-gamma-secretase cleavage, we focused on determining the intracellular site of the cleavage. To address this issue, we used APP-C100 encoding the C-terminal beta-amyloid precursor protein (APP) fragment truncated at the N terminus of Abeta (C100); C100 requires only gamma-secretase cleavage to yield Abeta. Mutated PS1 (M146L)-induced Neuro 2a cells showed enhanced Abeta1-42 generation from transiently expressed C100 as well as from full-length APP, whereas the generation of Abeta1-40 was not increased. The intracellular generation of Abeta1-42 from transiently expressed C100 in both mutated PS1-induced and wild-type Neuro 2a cells was inhibited by brefeldin A. Moreover, the generation of Abeta1-42 and Abeta1-40 from a C100 mutant containing a di-lysine endoplasmic reticulum retention signal was greatly decreased, indicating that the major intracellular site of gamma-secretase cleavage is not the endoplasmic reticulum. The intracellular generation of Abeta1-42/40 from C100 was not influenced by monensin treatment, and the level of Abeta1-42/40 generated from C100 carrying a sorting signal for the trans-Golgi network was higher than that generated from wild-type C100. These results using PS1-mutation-harbouring and wild-type Neuro 2a cells suggest that Abeta42/40-gamma-secretase cleavages occur in the Golgi compartment and the trans-Golgi network, and that the PS1 mutation does not alter the intracelluar site of Abeta42-gamma-secretase cleavage in the normal APP proteolytic processing pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号