共查询到20条相似文献,搜索用时 15 毫秒
1.
酿酒酵母细胞在生长过程中会不断受到内外环境的氧化攻击。活性氧族物质的累积能够损害细胞中的脂质、DNA和蛋白质,从而会影响细胞的正常功能,严重者将造成细胞死亡。为了对抗氧化胁迫,酵母细胞在不断地适应过程中,进化出了较为完整的保护机制,呈现出多水平多层次的应激应答反应。细胞在非酶水平、蛋白质水平和基因水平上协同作用,共同完成了活性氧族物质的清除和胁迫信号的传递应答。本文对酵母细胞在氧化胁迫环境下的应答调控做了简要综述。 相似文献
2.
3.
4.
Zechmann B Liou LC Koffler BE Horvat L Tomašić A Fulgosi H Zhang Z 《FEMS yeast research》2011,11(8):631-642
Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H(2) O(2) ) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress. 相似文献
5.
Saccharomyces cerevisiae grown in batch culture at pH 5.5 releases 0.1 to 0.2 pg protein per cell to the external medium over a period of four to five days, final concentration 20–40 g/ml. Cells grown at pH 3.0 release 10-fold this quantity (1–2 pg/cell, final concentration 100–200 g/ml). A kinetic model based on published behavior of periplasmic protein gave a good fit to the observed kinetics of exoprotein yield. The electrophoretic pattern of exoprotein differed from that of cell lysate protein, and exoprotein synthesis was apparently limited to early stages of the life cycle. These results are consistent with the identification of exoprotein as periplasmic protein released to the external medium through the cell wall. Analysis of the observed kinetics of exoprotein yield, utilizing the kinetic model suggests that the greater exoprotein production of cells grown at pH 3.0 was due entirely to greater synthesis of periplasmic proteins while the fraction of periplasmic protein released per unit time was greater for cells grown at pH 5.5. The latter conclusion is supported by thicker cell walls of cells grown at pH 3.0 as observed by electron microscopy. At an applied level the apparent limitation of exoprotein synthesis to the first few hours of cell life, the slow leakage of exoprotein through the cell wall, and the dilute nature of a yeast suspension do not favor the utilization of yeast cells for direct conversion of substrate into protein released to the external medium. 相似文献
6.
7.
8.
9.
An investigation of the role of the var1 protein in the assembly of the yeast mitochondrial ribosomes was carried out in a temperature conditional mutant, strain h56, which contains a mutation (tsv1) just upstream of the structural gene for the var1 protein. The mutation results in a marked decrease in the synthesis of the var1 protein at the permissive temperature of 28 degrees C and an apparently complete absence of var1 synthesis at the restrictive temperature of 36 degrees C. Long-term growth of strain h56 at the non-permissive temperature was found to result in the loss of the small (37 S) ribosomal subunit and the appearance of a novel 30 S ribonucleoparticle. Both the small (37 S) and the large (54 S) mitochondrial ribosomal subunits were found to be assembled in strain h56 for at least 3 h after transfer to the non-permissive temperature. 相似文献
10.
Cabiscol E Piulats E Echave P Herrero E Ros J 《The Journal of biological chemistry》2000,275(35):27393-27398
We have analyzed the proteins that are oxidatively damaged when Saccharomyces cerevisiae cells are exposed to stressing conditions. Carbonyl groups generated by hydrogen peroxide or menadione on proteins of aerobically respiring cells were detected by Western blotting, purified, and identified. Mitochondrial proteins such as E2 subunits of both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, aconitase, heat-shock protein 60, and the cytosolic fatty acid synthase (alpha subunit) and glyceraldehyde-3-phosphate dehydrogenase were the major targets. In addition we also report the in vivo modification of lipoamide present in the above-mentioned E2 subunits under the stressing conditions tested and that this also occurs with the homologous enzymes present in Escherichia coli cells that were used for comparative analysis. Under fermentative conditions, the main protein targets in S. cerevisiae cells treated with hydrogen peroxide or menadione were pyruvate decarboxylase, enolase, fatty acid synthase, and glyceraldehyde-3-phosphate dehydrogenase. Under the stress conditions tested, fermenting cells exhibit a lower viability than aerobically respiring cells and, consistently, increased peroxide generation as well as higher content of protein carbonyls and lipid peroxides. Our results strongly suggest that the oxidative stress in prokaryotic and eukaryotic cells shares common features. 相似文献
11.
The spindle checkpoint regulates microtubule-based chromosome segregation and helps to maintain genomic stability [1,2]. Mutational inactivation of spindle checkpoint genes has been implicated in the progression of several types of human cancer. Recent evidence from budding yeast suggests that the spindle checkpoint is complex. Order-of-function experiments have defined two separable pathways within the checkpoint. One pathway, defined by MAD2, controls the metaphase-to-anaphase transition and the other, defined by BUB2, controls the exit from mitosis [3-6]. The relationships between the separate branches of the checkpoint, and especially the events that trigger the pathways, have not been defined. We localized a Bub2p-GFP fusion protein to the cytoplasmic side of the spindle pole body and used a kar9 mutant to show that cells with misoriented spindles are arrested in anaphase of mitosis. We used a kar9 bub2 double mutant to show that the arrest is BUB2 dependent. We conclude that the separate pathways of the spindle checkpoint respond to different classes of microtubules. The MAD2 branch of the pathway responds to kinetochore microtubule interactions and the BUB2 branch of the pathway operates within the cytoplasm, responding to spindle misorientation. 相似文献
12.
Summary The nuclear genome encoded yeast protein CBS2 is required for translational activation of mitochondrial cytochrome b RNA. Genetic studies have shown that the target sequence of the CBS2 protein is the 5 untranslated leader sequence of cytochrome b RNA. Here we report on the intracellular localization of CBS2. CBS2 protein, expressed in Escherichia coli and prepared from inclusion bodies, was used as an antigen to raise a polyclonal rabbit antiserum. Affinity-purified CBS2 antibodies detect a 45 kDa protein in mitochondrial lysates of wild-type cells, which is absent in a strain in which the CBS2 gene has been deleted. The protein is overexpressed in mitochondrial extracts of a transformant carrying the CBS2 gene on a high copy number plasmid, but undetectable in the post-mitochondrial supernatant. Intramitochondrial localization of CBS2 was verified by in vitro import of CBS2 protein that had been synthesized in a reticulocyte lysate programmed with CBS2 mRNA transcribed in vitro. Mitochondrial import of CBS2 is not accompanied by any detectable proteolytic processing. 相似文献
13.
A method has been devised to test intergenic complementation of mutations in the mitochondrial DNA of Saccharomyces cerevisiae. The test is based on the observation that diploids issued from pairwise crosses of certain mit- mutants with deficiencies in cytochrome oxidase, or coenzyme QH2-cytochrome c reductase, acquire high levels of respiratory activity shortly after zygote formation. Under our experimental conditions neither biochemical complementation, interallelic complementation, nor recombination has been found to contribute to any significant extent toward the respiration measured in the diploids at early times. The test has been used to study the number of complementation groups represented by a large number of mit- mutants. Results of pairwise crosses of mutants in the oxi 1, oxi 2, oxi 3, cob 1, and cob 2 loci indicate that complementation occurs between the oxi and cob loci between different oxi loci but not between the two cob loci. The five loci have, therefore, been assigned to four different complementation groups. 相似文献
14.
Mitochondrial functional interactions between frataxin and Isu1p, the iron-sulfur cluster scaffold protein, in Saccharomyces cerevisiae 总被引:1,自引:0,他引:1
Here we investigated a biological association of constitutively active Src with TrkA in SK-N-MC human neuroblastoma cells. Activation of TrkA and extracellular signal-regulated kinase (ERK) by nerve growth factor (NGF) was inhibited by pretreatment with PP2, an inhibitor of Src family kinases. Moreover, NGF-induced phosphorylation of TrkA and ERK was also attenuated by the transfection with a dominant-negative src construct. On the other hand, the transfection with a constitutively active src construct enhanced these phosphorylations. In addition, we showed that active Src phosphorylates TrkA directly in vitro, and that Src associates with TrkA through Grb2 after NGF stimulation. These results suggest that constitutively active Src that associates with TrkA through Grb2 after NGF stimulation participates in TrkA phosphorylation and in turn enhances the mitogen-activated protein kinase signaling in SK-N-MC cells. 相似文献
15.
Respiratory deficient mutants of Saccharomyces cerevisiae have been instrumental in identifying an increasing number of nuclear gene products that promote pre- and post-translational steps of the pathway responsible for biogenesis of the mitochondrial ATP synthase. In this article we have attempted to marshal current information about the functions of such accessory factors and the roles they play in expression and assembly of the mitochondrially encoded subunits of the ATP synthase. We also discuss evidence that the ATP synthase may be built up from three separate modules corresponding to the F1 ATPase, the stator and F0. 相似文献
16.
When exponentially growing Saccharomyces cerevisiae was transferred from a normal high water activity growth medium (aw 0.997) to a medium containing 8% NaCl low water activity growth medium (aw 0.955), glycerol accumulation during the first eight hours of the adaptation was both retarded and greatly diminished in magnitude. Investigation of the underlying reasons for the slow onset of glycerol accumulation revealed that not only was overall glycerol production reduced by salt transfer, but also the rates of ethanol production and glucose consumption were reduced. Measurement of glycolytic intermediates revealed an accumulation of glucose-6-phosphate, fructose-6-phosphate, fructose 1,6 bisphosphate and phosphoenolpyruvate in S. cerevisiae 3 to 4 h after transfer to salt, suggesting that one or more glycolytic enzymes were inhibited. Potassium ions accumulated in S. cerevisiae after salt transfer and reached a maximum about 6 h after transfer, whereas the sodium ion content increased progressively during the adaptation period. The trehalose content also increased in adapting cells. It is suggested that inhibition of glycerol production during the initial period of adaptation could be due to either the inhibition of glycerol-3-phosphate dehydrogenase by increased cation content or the inhibitin of glycolysis, glycerol being produced glycolytically in S. cerevisiae. The increased accumulation of glycerol towards the end of the 8-h period suggests that the osmoregulatory response of S. cerevisiae involves complex sets of adjustments in which inhibition of glycerol-3-phosphate dehydrogenase must be relieved before glycerol functions as a major osmoregulator. 相似文献
17.
18.
19.