首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN1-4) play a crucial role in the regulation of cell excitability. Importantly, they contribute to spontaneous rhythmic activity in brain and heart. HCN channels are principally activated by membrane hyperpolarization and binding of cAMP. Here, we identify tyrosine phosphorylation by Src kinase as another mechanism affecting channel gating. Inhibition of Src by specific blockers slowed down activation kinetics of native and heterologously expressed HCN channels. The same effect on HCN channel activation was observed in cells cotransfected with a dominant-negative Src mutant. Immunoprecipitation demonstrated that Src binds to and phosphorylates native and heterologously expressed HCN2. Src interacts via its SH3 domain with a sequence of HCN2 encompassing part of the C-linker and the cyclic nucleotide binding domain. We identified a highly conserved tyrosine residue in the C-linker of HCN channels (Tyr476 in HCN2) that confers modulation by Src. Replacement of this tyrosine by phenylalanine in HCN2 or HCN4 abolished sensitivity to Src inhibitors. Mass spectrometry confirmed that Tyr476 is phosphorylated by Src. Our results have functional implications for HCN channel gating. Furthermore, they indicate that tyrosine phosphorylation contributes in vivo to the fine tuning of HCN channel activity.  相似文献   

2.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) subunits produce a slowly activating current in response to hyperpolarization (If) and an instantaneous voltage-independent current (Iinst) when expressed in Chinese hamster ovary (CHO) cells. Here we found that a mutation in the S4-S5 linker of HCN2 (Y331D) produced an additional mixed cationic instantaneous current. However, this current was inhibited by external Cs+ like If and unlike Iinst. Together with a concomitant reduction in If, the data suggest that the Y331D mutation disrupted channel closing placing the channel in a "If-like," and not an "Iinst-like," state. The "If-like" instantaneous current represented approximately 70% of total If over voltages ranging from +20 to -150 mV in high K+ solutions. If activated at more depolarized potentials and the activation curve was less steep, whereas deactivation was significantly slowed, consistent with the idea that the mutation inhibited channel closing. The data suggest that the mutation produced allosteric effects on the activation gate (S6 segment) and/or on voltage-sensing elements. We also found that decreases in the ratio of external K+/Na+ further disrupted channel closing in the mutant channel. Finally, our data suggest that the structures involved in producing Iinst are similar between the HCN1 and HCN2 isoforms and that excess HCN protein on the plasma membrane of CHO cells relative to native cells is not responsible for Iinst. The data are consistent with Iinst flowing through a "leaky" closed state but do not rule out flow through a second configuration of recombinant HCN channels or up-regulated endogenous channels/subunits.  相似文献   

3.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.  相似文献   

4.
The hyperpolarization-activated cyclic nucleotide-gated (HCN) family of "pacemaker" channels includes 4 isoforms, the kinetics and cAMP-induced modulation of which differ quantitatively. Because HCN isoforms are highly homologous in the central region, but diverge more substantially in the N and C termini, we asked whether these latter regions could contribute to the determination of channel properties. To this aim, we analyzed activation/deactivation kinetics and the response to cAMP of heterologously expressed isoforms mHCN1 and rbHCN4 and verified that mHCN1 has much faster kinetics and lower cAMP sensitivity than rbHCN4. We then constructed rbHCN4 chimeras by replacing either the N or the C terminus, or both, with the analogous domains from mHCN1. We found that: 1) replacement of the N terminus (chimera N1-4) did not substantially modify either the kinetics or cAMP dependence of wild-type channels; 2) replacement of the C terminus, on the contrary, resulted in a chimeric channel (4-C1), the kinetics of which were strongly accelerated compared with rbHCN4, and that was fully insensitive to cAMP; 3) replacement of both N and C termini led to the same results as replacement of the C terminus alone. These results indicate that the C terminus of rbHCN4 contributes to the regulation of voltage- and cAMP-dependent channel gating, possibly through interaction with other intracellular regions not belonging to the N terminus.  相似文献   

5.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2-4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V(½) in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels.  相似文献   

6.
7.
Wan Y 《生理学报》2008,60(5):579-580
Dorsal root ganglion(DRG)neurons have peripheral terminals in skin,muscle,and other peripheral tissues,andcentral terminals  相似文献   

8.
Dorsal root ganglion DRG neurons have peripheral ter-minals in skin, muscle, and other peripheral tissues, andcentral terminals in the spinal cord dorsal horn.  相似文献   

9.
Regulation of cyclic nucleotide-gated channels   总被引:9,自引:0,他引:9  
Cyclic nucleotide-gated (CNG) channels are found in several cell types, and are best studied in photoreceptors and olfactory sensory neurons. There, CNG channels are gated by the second messengers of the visual and olfactory signalling cascades, cGMP and cAMP respectively, and operate as transduction channels generating the stimulus-induced receptor potentials. In visual and olfactory sensory cells CNG channels conduct cationic currents. Calcium can contribute a large fraction of this current, and calcium influx serves a modulatory role in CNG-channel mediated signal transduction. There have been recent developments in our understanding of how the regulation of CNG channels contributes to the physiological properties of photoreceptors and olfactory sensory cells, and in particular on the role of calcium-mediated feedback.  相似文献   

10.
The coassembly of homologous subunits to heteromeric complexes serves as an important mechanism in generating ion channel diversity. Here, we have studied heteromerization in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel family. Using a combination of fluorescence confocal microscopy, coimmunoprecipitation, and electrophysiology we found that upon coexpression in HEK293 cells almost all dimeric combinations of HCN channel subunits give rise to the formation of stable channel complexes in the plasma membrane. We also identified HCN1/HCN2 heteromers in mouse brain indicating that heteromeric channels exist in vivo. Surprisingly, HCN2 and HCN3 did not coassemble to heteromeric channels. This finding indicates that heteromerization requires specific structural determinants that are not present in all HCN channel combinations. Using N-glycosidase F we show that native as well as recombinant HCN channels are glycosylated resulting in a 10-20-kDa shift in the molecular weight. Tunicamycin, an inhibitor of N-linked glycosylation, blocked surface membrane expression of HCN2. Similarly, a mutant HCN2 channel in which the putative N-glycosylation site in the loop between S5 and the pore helix was replaced by glutamine (HCN2N380Q) was not inserted into the plasma membrane and did not yield detectable whole-cell currents. These results indicate that N-linked glycosylation is required for cell surface trafficking of HCN channels. Cotransfection of HCN2N380Q with HCN4, but not with HCN3, rescued cell surface expression of HCN2N380Q. Immunoprecipitation revealed that this rescue was due to the formation of a HCN2N380Q/HCN4 heteromeric channel. Taken together our results indicate that subunit heteromerization and glycosylation are important determinants of the formation of native HCN channels.  相似文献   

11.
In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.  相似文献   

12.
13.
Cyclic nucleotide-gated (CNG) channels are highly specialized to carry out their unique role in cell signaling. Significant progress has been made in the last several years determining the molecular mechanisms for these specializations. The activation of the channels begins with the binding of cyclic nucleotide to a domain in the carboxyl terminal region. This binding, in turn, produces an induced fit of the protein that involves a movement of the C-helix portion of the binding domain. The induced fit of the binding domain is coupled to an allosteric conformational change that opens the channel pore. The pore is formed primarily from the sequence between the S5 and S6 segments. A single glutamic acid in the pore represents the binding site for multiple monovalent cations, the blocking site for external divalent cations, and the site for the effect of protons on permeation.  相似文献   

14.
We irradiated cyclic nucleotide-gated ion channels in situ with ultraviolet light to probe the role of aromatic residues in ion channel function. UV light reduced the current through excised membrane patches from Xenopus oocytes expressing the alpha subunit of bovine retinal cyclic nucleotide-gated channels irreversibly, a result consistent with permanent covalent modification of channel amino acids by UV light. The magnitude of the current reduction depended only on the total photon dose delivered to the patches, and not on the intensity of the exciting light, indicating that the functionally important photochemical modification(s) occurred from an excited state reached by a one-photon absorption process. The wavelength dependence of the channels' UV light sensitivity (the action spectrum) was quantitatively consistent with the absorption spectrum of tryptophan, with a small component at long wavelengths, possibly due to cystine absorption. This spectral analysis suggests that UV light reduced the currents at most wavelengths studied by modifying one or more "target" tryptophans in the channels. Comparison of the channels' action spectrum to the absorption spectrum of tryptophan in various solvents suggests that the UV light targets are in a water-like chemical environment. Experiments on mutant channels indicated that the UV light sensitivity of wild-type channels was not conferred exclusively by any one of the 10 tryptophan residues in a subunit. The similarity in the dose dependences of channel current reduction and tryptophan photolysis in solution suggests that photochemical modification of a small number of tryptophan targets in the channels is sufficient to decrease the currents.  相似文献   

15.
Cellular calcium uptake is a controlled physiological process mediated by multiple ion channels. The exposure of cells to either one of the protein kinase C (PKC) inhibitors, staurosporine (STS) or PKC412, can trigger Ca2+ influx leading to cell death. The precise molecular mechanisms regulating these events remain elusive. In this study, we report that the PKC inhibitors induce a prolonged Ca2+ import through hyperpolarization‐activated cyclic nucleotide‐gated channel 2 (HCN2) in lung carcinoma cells and in primary culture of cortical neurons, sufficient to trigger apoptosis‐inducing factor (AIF)‐mediated apoptosis. Downregulation of HCN2 prevented the drug‐induced Ca2+ increase and subsequent apoptosis. Importantly, the PKC inhibitors did not cause Ca2+ entry into HEK293 cells, which do not express the HCN channels. However, introduction of HCN2 sensitized them to STS/PKC412‐induced apoptosis. Mutagenesis of putative PKC phosphorylation sites within the C‐terminal domain of HCN2 revealed that dephosphorylation of Thr549 was critical for the prolonged Ca2+ entry required for AIF‐mediated apoptosis. Our findings demonstrate a novel role for the HCN2 channel by providing evidence that it can act as an upstream regulator of cell death triggered by PKC inhibitors.  相似文献   

16.
Cyclic nucleotide-gated (CNG) channels are critical components in the visual and olfactory signal transduction pathways, and they primarily gate in response to changes in the cytoplasmic concentration of cyclic nucleotides. We previously found that the ability of the native rod CNG channel to be opened by cGMP was markedly inhibited by analogues of diacylglycerol (DAG) without a phosphorylation reaction (Gordon, S.E., J. Downing-Park, B. Tam, and A.L. Zimmerman. 1995. Biophys. J. 69:409-417). Here, we have studied cloned bovine rod and rat olfactory CNG channels expressed in Xenopus oocytes, and have determined that they are differentially inhibited by DAG. At saturating [cGMP], DAG inhibition of homomultimeric (alpha subunit only) rod channels was similar to that of the native rod CNG channel, but DAG was much less effective at inhibiting the homomultimeric olfactory channel, producing only partial inhibition even at high [DAG]. However, at low open probability (P(o)), both channels were more sensitive to DAG, suggesting that DAG is a closed state inhibitor. The Hill coefficients for DAG inhibition were often greater than one, suggesting that more than one DAG molecule is required for effective inhibition of a channel. In single-channel recordings, DAG decreased the P(o) but not the single-channel conductance. Results with chimeras of rod and olfactory channels suggest that the differences in DAG inhibition correlate more with differences in the transmembrane segments and their attached loops than with differences in the amino and carboxyl termini. Our results are consistent with a model in which multiple DAG molecules stabilize the closed state(s) of a CNG channel by binding directly to the channel and/or by altering bilayer-channel interactions. We speculate that if DAG interacts directly with the channel, it may insert into a putative hydrophobic crevice among the transmembrane domains of each subunit or at the hydrophobic interface between the channel and the bilayer.  相似文献   

17.
Direct binding of cGMP or cAMP to tetrameric cyclic nucleotide-gated (CNG) channels will normally promote the open (conductive) conformation. However, the catfish CNGA2 subtype exhibits bimodal agonism, whereby open probability (Po) increases with initial cGMP binding events ("pro" action) but decreases with subsequent cGMP binding events ("con" action) that occur at concentrations above 3 mM. We constructed, and heterologously expressed, chimeric CNG channel subunits with sequence substitutions in the binding domain (BD), and tested their activation using patch-clamp of cell-free membranes. A normal subunit with the rat CNGA4 BD (with only pro action) could be converted into a bimodal subunit (both pro and con action) by replacing the N-terminal portion of the BD with catfish CNGA2 sequence. We then fused two bimodal and two normal subunits in tandem tetramers, to form heteromeric CNG channels with bimodal pseudo-subunits either adjacent (cis) or diagonally opposite (trans). The cis tetramer showed con action, with a mean ratio of steady-state conductances g(30mMcGMP) / g(3mMcGMP) = 0.87, demonstrating bimodal agonism in a heteromeric CNG channel for the first time. In contrast, trans tetramers showed normal cGMP agonism up to 30 mM cGMP with mean g(30mMcGMP) / g(3mMcGMP) = 1.02, although a minority of oocytes (4 of 15) expressed anomalous channel populations with con action. Rearranging subunits in a heteromer thus influences a channel's Po at high cGMP concentration. The sensitivity of con action to neighbouring subunits implies a cooperative mechanism.  相似文献   

18.
The current flow through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, referred to as I(h), plays a major role in several fundamental biological processes. The sequence of the presumed pore region of HCN channels is reminiscent of that of most known K(+)-selective channels. In the present work, the pore topology of an HCN channel from sea urchin sperm, called SpHCN, was investigated by means of the substituted-cysteine accessibility method (SCAM). The I(h) current in the wild-type (w.t.) SpHCN channel was irreversibly blocked by intracellular Cd(2+). This blockage was not observed in mutant C428S. Extracellular Cd(2+) did not cause any inhibition of the I(h) current in the w.t. SpHCN channel, but blocked the current in mutant channels K433C and F434C. Large extracellular anions blocked the current both in the w.t. and K433Q mutant channel. These results suggest that 1) cysteine in position 428 faces the intracellular medium; 2) lysine and phenylalanine in position 433 and 434, respectively, face the extracellular side of the membrane; and 3) lysine 433 does not mediate the anion blockade. Additionally, our study confirms that the K(+) channel signature sequence GYG also forms the inner pore in HCN channels.  相似文献   

19.
Brown RL  Haley TL  Snow SD 《Biochemistry》2000,39(2):432-441
First discovered in the sensory epithelium of the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels have now been found in tissues throughout the body. Native rod CNG channels are tetramers composed of homologous, but distinct, alpha- and beta-subunits. The goal of this study was to develop a novel method for targeting covalent attachment of cGMP to individual subunit types. Toward this goal, we have found that treatment of membrane patches expressing rod alpha-subunit channels with sulfhydryl-reactive derivatives of cGMP resulted in irreversible activation. The persistent currents were sensitive to block by both Mg(2+) and tetracaine. Pretreatment of the patch with the sulfhydryl-blocking reagents N-ethylmaleimide (NEM) and bis-dithionitrobenzoic acid (DTNB) prevented covalent activation; the effect of DTNB was reversed by reduction with DTT. Furthermore, the process of covalent activation was dramatically slowed by the presence of an excess of 8-Br-cGMP. These results suggested that covalent activation resulted from the tethering of cGMP near the channel's ligand-binding sites by reaction with an endogenous cysteine. The alpha-subunit of the rod channel contains seven cysteine residues, and we set out to determine the site of attachment by site-directed mutagenesis. Surprisingly, irreversible activation was not abolished by elimination of all seven cysteine residues. This result suggests that the site of attachment is on a tightly associated protein, rather than on the channel protein itself. To further investigate these results, we treated patches containing irreversibly activated channels with 100 microg/mL trypsin and discovered two modes of covalent activation. One type developed rapidly and was removed by trypsin treatment, and the second developed slowly and was resistant to trypsin treatment. Both types of covalent activation were present in all mutants tested and were also present when CNG channels were expressed in HEK-293 cells. These results suggest that CNG channel subunits may associate with endogenous proteins when they are expressed in heterologous systems.  相似文献   

20.
Formation of complexes between ion channels is important for signal processing in the brain. Here we investigate the biochemical and biophysical interactions between HCN1 channels and Cav3.2 T-type channels. We found that HCN1 co-immunoprecipitated with Cav3.2 from lysates of either mouse brain or tsA-201 cells, with the HCN1 N-terminus associating with the Cav3.2 N-terminus. Cav3.2 channel activity appeared to be functionally regulated by HCN1. The expression of HCN1 induced a decrease in Cav3.2 Ba2+ influx (IBa2+) along with altered channel kinetics and a depolarizing shift in activation gating. However, a reciprocal regulation of HCN1 by Cav3.2 was not observed. This study highlights a regulatory role of HCN1 on Cav3.2 voltage-dependent properties, which are expected to affect physiologic functions such as synaptic transmission and cellular excitability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号