首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 735 毫秒
1.
An actomyosin motor complex assembled below the parasite's plasma membrane drives erythrocyte invasion by Plasmodium falciparum merozoites. The complex is comprised of several proteins including myosin (MyoA), myosin tail domain interacting protein (MTIP) and glideosome associated proteins (GAP) 45 and 50, and is anchored on the inner membrane complex (IMC), which underlies the plasmalemma. A ternary complex of MyoA, MTIP and GAP45 is formed that then associates with GAP50. We show that full length GAP45 labelled internally with GFP is assembled into the motor complex and transported to the developing IMC in early schizogony, where it accumulates during intracellular development until merozoite release. We show that GAP45 is phosphorylated by calcium dependent protein kinase 1 (CDPK1), and identify the modified serine residues. Replacing these serine residues with alanine or aspartate has no apparent effect on GAP45 assembly into the motor protein complex or its subcellular location in the parasite. The early assembly of the motor complex suggests that it has functions in addition to its role in erythrocyte invasion.  相似文献   

2.
Parasites of the Apicomplexa phylum use an actomyosin motor to drive invasion of host cells. The motor complex is located at the parasite's periphery between the plasma membrane and an inner membrane complex. A crucial component of this complex is myosin tail domain interacting protein (MTIP) identified in the murine malaria parasite Plasmodium yoelii. Here, we show that MTIP is expressed in Plasmodium falciparum merozoites, localises to the periphery of the cell and is present in a complex with myosin A. The MTIP-myosin A tail interaction has a Kd of 235 nM and calcium ions do not play a role in modulating the binding affinity of the two molecules, despite reports of a predicted EF-hand in MTIP. Antibodies to MTIP were used to immobilise the MTIP-myosin A complex, allowing actin binding and motility to be examined. Measurement of actin filament velocities powered by myosin A revealed a velocity of 3.51 microm s(-1), a speed comparable to fast muscle myosins. A short peptide derived from the tail of myosin A (C-MyoA) bound to MTIP and was able to disrupt the association of MTIP and myosin A in parasite lysates. C-MyoA peptidomimetic compounds that disrupt the MTIP-myosin A interaction are predicted to inhibit parasite motility and host cell invasion, which may be targets for new therapeutic approaches.  相似文献   

3.
The Myosin A-tail interacting protein (MTIP) of the malaria parasite links the actomyosin motor of the host cell invasion machinery to its inner membrane complex. We report here that at neutral pH Plasmodium falciparum MTIP in complex with Myosin A adopts a compact conformation, with its two domains completely surrounding the Myosin A-tail helix, dramatically different from previously observed extended MTIP structures. Crystallographic and mutagenesis studies show that H810 and K813 of Myosin A are key players in the formation of the compact MTIP:Myosin A complex. Only the unprotonated state of Myosin A-H810 is compatible with the compact complex. Most surprisingly, every side-chain atom of Myosin A-K813 is engaged in contacts with MTIP. While this side-chain was previously considered to prevent a compact conformation of MTIP with Myosin A, it actually appears to be essential for the formation of the compact complex. The hydrophobic pockets and adaptability seen in the available series of MTIP structures bodes well for the discovery of inhibitors of cell invasion by malaria parasites.  相似文献   

4.
Functional dissection of the apicomplexan glideosome molecular architecture   总被引:1,自引:0,他引:1  
The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.  相似文献   

5.
The actomyosin motor complex of the glideosome provides the force needed by apicomplexan parasites such as Toxoplasma gondii (Tg) and Plasmodium falciparum (Pf) to invade their host cells and for gliding motility of their motile forms. Glideosome Associated Protein 45 (PfGAP45) is an essential component of the glideosome complex as it facilitates anchoring and effective functioning of the motor. Dissection of events that regulate PfGAP45 may provide insights into how the motor and the glideosome operate. We found that PfGAP45 is phosphorylated in response to Phospholipase C (PLC) and calcium signaling. It is phosphorylated by P. falciparum kinases Protein Kinase B (PfPKB) and Calcium Dependent Protein Kinase 1 (PfCDPK1), which are calcium dependent enzymes, at S89, S103 and S149. The Phospholipase C pathway influenced the phosphorylation of S103 and S149. The phosphorylation of PfGAP45 at these sites is differentially regulated during parasite development. The localization of PfGAP45 and its association may be independent of the phosphorylation of these sites. PfGAP45 regulation in response to calcium fits in well with the previously described role of calcium in host cell invasion by malaria parasite.  相似文献   

6.
The malarial parasite Plasmodium falciparum transposes a Golgi-like compartment, referred to as Maurer's clefts, into the cytoplasm of its host cell, the erythrocyte, and delivering parasite molecules to the host cell surface. We report here a novel role of the Maurer's clefts implicating a parasite protein phosphatase 1 (PP1) and related to the phosphorylation status of P. falciparum skeleton-binding protein 1 (PfSBP1), a trans-membrane protein of the clefts interacting with the host cell membrane via its carboxy-terminal domain. Based on co-immunoprecipitation and inhibition studies, we show that the parasite PP1 type phosphatase modulates the phosphorylation status of the amino-terminal domain of PfSBP1 in the lumen of Maurer's clefts. Importantly, the addition of a PP1 inhibitor, calyculin A, to late schizonts results in the hyperphosphorylation of PfSBP1 and prevents parasite release from the host cell. We propose that the hyperphosphorylation of PfSBP1 interferes with the release of merozoites, the invasive blood stage of the parasite, by increasing the red cell membrane stability. Moreover, the parasite PP1 phosphatase is the first enzyme essential for the parasite development detected in the Maurer's clefts.  相似文献   

7.
Toxoplasma gondii motility is powered by the myosin XIV motor complex, which consists of the myosin XIV heavy chain (MyoA), the myosin light chain (MLC1), GAP45, and GAP50, the membrane anchor of the complex. MyoA, MLC1, and GAP45 are initially assembled into a soluble complex, which then associates with GAP50, an integral membrane protein of the parasite inner membrane complex. While all proteins in the myosin XIV motor complex are essential for parasite survival, the specific role of GAP45 remains unclear. We demonstrate here that final assembly of the motor complex is controlled by phosphorylation of GAP45. This protein is phosphorylated on multiple residues, and by using mass spectroscopy, we have identified two of these, Ser163 and Ser167. The importance of these phosphorylation events was determined by mutation of Ser163 and Ser167 to Glu and Ala residues to mimic phosphorylated and nonphosphorylated residues, respectively. Mutation of Ser163 and Ser167 to either Ala or Glu residues does not affect targeting of GAP45 to the inner membrane complex or its association with MyoA and MLC1. Mutation of Ser163 and Ser167 to Ala residues also does not affect assembly of the mutant GAP45 protein into the myosin motor complex. Mutation of Ser163 and Ser167 to Glu residues, however, prevents association of the MyoA-MLC1-GAP45 complex with GAP50. These observations indicate that phosphorylation of Ser163 and Ser167 in GAP45 controls the final step in assembly of the myosin XIV motor complex.  相似文献   

8.
A 33-kDa soluble antigen identified in the culture supernatant by patient serum and monoclonal antibodies was present in rings, trophozoites, schizonts, and merozoites of Plasmodium falciparum. The antigen which is released into the culture supernatant by growing parasites was also observed in the host cells of trophozoites and schizonts and could be localized on the host cell surface. Its specificity for the surface of trophozoites and schizonts was observed to decrease with increased duration without subculture. The antigen could then be detected on the surface of noninfected erythrocytes. The antigenicity of the 33-kDa antigen was destroyed by heating at 65 degrees C. Monoclonal and polyclonal specific antibodies weakly inhibited parasite growth in vitro. The antigen was present in both knob positive and knob negative parasites in all the P. falciparum isolates tested.  相似文献   

9.
Due to their critical involvement in the execution of the malaria parasite developmental pattern both in the mosquito vector and in the human host, Plasmodium calcium-dependent protein kinases (CDPKs) are considered promising candidates for the development of new tools to block malaria transmission. We report here that the phenothiazine trifluoperazine non-competitively inhibits Plasmodium falciparum CDPK4 in the micromolar range while other calmodulin antagonists only marginally affect the enzyme activity, and we propose the inhibition mechanism. Our results demonstrate that selective enzyme inhibition is achievable by targeting its calmodulin-like domain. This observation could be exploited for the discovery of innovative phenothiazine-based CDPK inhibitors of potential medical interest.  相似文献   

10.
Toxoplasma gondii motility, which is essential for host cell entry, migration through host tissues, and invasion, is a unique form of actin-dependent gliding. It is powered by a motor complex mainly composed of myosin heavy chain A, myosin light chain 1, gliding associated proteins GAP45, and GAP50, the only integral membrane anchor so far described. In the present study, we have combined glycomic and proteomic approaches to demonstrate that all three potential N-glycosylated sites of GAP50 are occupied by unusual N-glycan structures that are rarely found on mature mammalian glycoproteins. Using site-directed mutagenesis, we show that N-glycosylation is a prerequisite for GAP50 transport from the endoplasmic reticulum to the Golgi apparatus and for its subsequent delivery into the inner complex membrane. Assembly of key partners into the gliding complex, and parasite motility are severely impaired in the unglycosylated GAP50 mutants. Furthermore, comparative affinity purification using N-glycosylated and unglycosylated GAP50 as bait identified three novel hypothetical proteins including the recently described gliding associated protein GAP40, and we demonstrate that N-glycans are required for efficient binding to gliding partners. Collectively, these results provide the first detailed analyses of T. gondii N-glycosylation functions that are vital for parasite motility and host cell entry.  相似文献   

11.
Toxoplasma gondii is an obligate intracellular parasite that infects all types of cells in humans. A family of calcium-dependent protein kinases (CDPKs), previously identified as important in the development of plants and protists, was recently shown to play a role in the infectivity of apicomplexans, and in motility and host cell invasion in particular. We report here the isolation of a new calcium-dependent protein kinase gene from the human toxoplasmosis parasite, Toxoplasma gondii. The gene consists of 12 exons. The encoded protein, TgCDPK4, consists of the four characteristic domains of members of the CDPK family and is most similar to PfCDPK2 from Plasmodium falciparum. We measured TgCDPK4 activity, induced by calcium influx, using a kinase assay. A calcium chelator (EGTA) inhibited this activity. These findings provide evidence of signal transduction involving members of the CDPK family in T. gondii.  相似文献   

12.
The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMC-associated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival.  相似文献   

13.
Erythrocytic malaria parasites utilize proteases for a number of cellular processes, including hydrolysis of hemoglobin, rupture of erythrocytes by mature schizonts, and subsequent invasion of erythrocytes by free merozoites. However, mechanisms used by malaria parasites to control protease activity have not been established. We report here the identification of an endogenous cysteine protease inhibitor of Plasmodium falciparum, falstatin, based on modest homology with the Trypanosoma cruzi cysteine protease inhibitor chagasin. Falstatin, expressed in Escherichia coli, was a potent reversible inhibitor of the P. falciparum cysteine proteases falcipain-2 and falcipain-3, as well as other parasite- and nonparasite-derived cysteine proteases, but it was a relatively weak inhibitor of the P. falciparum cysteine proteases falcipain-1 and dipeptidyl aminopeptidase 1. Falstatin is present in schizonts, merozoites, and rings, but not in trophozoites, the stage at which the cysteine protease activity of P. falciparum is maximal. Falstatin localizes to the periphery of rings and early schizonts, is diffusely expressed in late schizonts and merozoites, and is released upon the rupture of mature schizonts. Treatment of late schizionts with antibodies that blocked the inhibitory activity of falstatin against native and recombinant falcipain-2 and falcipain-3 dose-dependently decreased the subsequent invasion of erythrocytes by merozoites. These results suggest that P. falciparum requires expression of falstatin to limit proteolysis by certain host or parasite cysteine proteases during erythrocyte invasion. This mechanism of regulation of proteolysis suggests new strategies for the development of antimalarial agents that specifically disrupt erythrocyte invasion.  相似文献   

14.
The most deadly of the human malaria parasites, Plasmodium falciparum, has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.  相似文献   

15.
Plasmodium falciparum and Toxoplasma gondii are obligate intracellular apicomplexan parasites that rapidly invade and extensively modify host cells. Protein phosphorylation is one mechanism by which these parasites can control such processes. Here we present a phosphoproteome analysis of peptides enriched from schizont stage P. falciparum and T. gondii tachyzoites that are either "intracellular" or purified away from host material. Using liquid chromatography-tandem mass spectrometry, we identified over 5,000 and 10,000 previously unknown phosphorylation sites in P. falciparum and T. gondii, respectively, revealing that protein phosphorylation is an extensively used regulation mechanism both within and beyond parasite boundaries. Unexpectedly, both parasites have phosphorylated tyrosines, and P. falciparum has unusual phosphorylation motifs that are apparently shaped by its A:T-rich genome. This data set provides important information on the role of phosphorylation in the host-pathogen interaction and clues to the evolutionary forces operating on protein phosphorylation motifs in both parasites.  相似文献   

16.
Calcium dependent protein kinases (CDPKs) are found only in plants and alveolates and are distinguished from other kinases by an activation domain that binds calcium directly. Plants contain families of these kinases and their functions are modulated by post translational modifications as well as calcium activation. Apicomplexan parasites also contain CDPK families and this review is focused on CDPK1 in Plasmodium spp. This enzyme has been implicated in parasite motility and host cell invasion and at least two substrates associated with the actomyosin motor complex have been identified. By analogy with the plant CDPKs we propose that its activity is modulated both by post translational modifications and by its subcellular location in a compartment within the parasite's pellicle, which may regulate the calcium concentration required for activation.  相似文献   

17.
Glycosylphosphatidylinositols (GPIs) are the major glycoconjugates in intraerythrocytic stage Plasmodium falciparum. Several functional proteins including merozoite surface protein 1 are anchored to the cell surface by GPI modification, and GPIs are vital to the parasite. Here, we studied the developmental stage-specific biosynthesis of GPIs by intraerythrocytic P. falciparum. The parasite synthesizes GPIs exclusively during the maturation of early trophozoites to late trophozoites but not during the development of rings to early trophozoites or late trophozoites to schizonts and merozoites. Mannosamine, an inhibitor of GPI biosynthesis, inhibits the growth of the parasite specifically at the trophozoite stage, preventing further development to schizonts and causing death. Mannosamine has no effect on the development of either rings to early trophozoites or late trophozoites to schizonts and merozoites. The analysis of GPIs and proteins synthesized by the parasite in the presence of mannosamine demonstrates that the effect is because of the inhibition of GPI biosynthesis. The data also show that mannosamine inhibits GPI biosynthesis by interfering with the addition of mannose to an inositol-acylated GlcN-phosphatidylinositol (PI) intermediate, which is distinctively different from the pattern seen in other organisms. In other systems, mannosamine inhibits GPI biosynthesis by interfering with either the transfer of a mannose residue to the Manalpha1-6Manalpha1-4GlcN-PI intermediate or the formation of ManN-Man-GlcN-PI, an aberrant GPI intermediate, which cannot be a substrate for further addition of mannose. Thus, the parasite GPI biosynthetic pathway could be a specific target for antimalarial drug development.  相似文献   

18.
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.  相似文献   

19.
Plasmodium falciparum proteins that efflux toxic metabolic products such as oxidised glutathione (GSSG) are possible targets for anti-malarial drug development. Proteins capable of transporting GSSG and glutathione conjugates include the multidrug resistance-associated transporters (MRPs). A gene, PFA0590w, encoding a MRP homologue, has been identified in P. falciparum. Here we show the presence of full-length mRNA (5.5 kb) of this PfMRP in trophozoites by RT-PCR and Northern blotting. A polyclonal anti-PfMRP antibody generated against two unique, hydrophilic peptides in the predicted sequence produced a strong immunoreactive protein band of 210-215 kDa on Western blots of schizonts of chloroquine-sensitive and chloroquine-resistant strains, confirming expression of PfMRP protein. Using confocal microscopy the protein was seen to be localised at the edge of the schizonts with no obvious staining of the food vacuole. We suggest that PfMRP may act as the GSSG transporter in the parasite plasma membrane.  相似文献   

20.
Calcium-dependent protein kinases play a crucial role in intracellular calcium signaling in plants, some algae and protozoa. In Plasmodium falciparum, calcium-dependent protein kinase 1 (PfCDPK1) is expressed during schizogony in the erythrocytic stage as well as in the sporozoite stage. It is coexpressed with genes that encode the parasite motor complex, a cellular component required for parasite invasion of host cells, parasite motility and potentially cytokinesis. A targeted gene-disruption approach demonstrated that pfcdpk1 seems to be essential for parasite viability. An in vitro biochemical screen using recombinant PfCDPK1 against a library of 20,000 compounds resulted in the identification of a series of structurally related 2,6,9-trisubstituted purines. Compound treatment caused sudden developmental arrest at the late schizont stage in P. falciparum and a large reduction in intracellular parasites in Toxoplasma gondii, which suggests a possible role for PfCDPK1 in regulation of parasite motility during egress and invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号