首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
P2X receptors for ATP are a family of ligand-gated cation channels. There are 11 conserved positive charges in the extracellular loop of P2X receptors. We have generated point mutants of these conserved residues (either Lys --> Arg, Lys --> Ala, Arg --> Lys, or Arg --> Ala) in the human P2X(1) receptor to determine their contribution to the binding of negatively charged ATP. ATP evoked concentration-dependent (EC(50) approximately 0.8 microm) desensitizing responses at wild-type (WT) P2X(1) receptors expressed in Xenopus oocytes. Suramin produced a parallel rightward shift in the concentration response curve with an estimated pK(B) of 6.7. Substitution of amino acids at positions Lys-53, Lys-190, Lys-215, Lys-325, Arg-202, Arg-305, and Arg-314 either had no effect or only a small change in ATP potency, time course, and/or suramin sensitivity. Modest changes in ATP potency were observed for mutants at K70R and R292K/A (20- and 100-fold decrease, respectively). Mutations at residues K68A and K309A reduced the potency of ATP by >1400-fold and prolonged the time course of the P2X(1) receptor current but had no effect on suramin antagonism. Lys-68, Lys-70, Arg-292, and Lys-309 are close to the predicted transmembrane domains of the receptor and suggest that the ATP binding pocket may form close to the channel vestibule.  相似文献   

2.
Su TR  Hung YS  Huang SS  Su HH  Su CC  Hsiao G  Chen YH  Lin MJ 《Life sciences》2011,88(23-24):1039-1046
AimsThe aim of this study was to investigate the mechanism for the reversal effect of NF449 (a suramin analogue) on the neuromuscular block induced by d-tubocurarine (d-TC).Main methodsNerve-stimulated muscle contractions and end-plate potentials were performed in mouse phrenic nerve-diaphragm preparations. Acetylcholine (ACh)-induced muscle contractions were performed in the chick biventer cervicis preparations. Presynaptic nerve terminal waveform recordings were performed in mouse triangularis sterni preparations.Key findingsAmongst the suramin analogues in this study, only the NF449 and suramin were able to reverse the blockade effect produced by d-TC on nerve-stimulated muscle contractions. Each of these suramin analogues (NF007, NF023, NF279 and NF449) alone has no significant effect on the amplitude of nerve-stimulated muscle contractions. NF449 and suramin also showed the antagonising effects on the inhibition of end-plate potentials induced by d-TC. Furthermore, pre-treatment with NF449 can antagonise the inhibition of d-TC in ACh-induced contractions of chick biventer cervicis muscle. NF449 produced a greater rightward shift of the dose–response inhibition curve for d-TC than did suramin. Because other purinergic 2X (P2X) receptor antagonists, NF023 and NF279, do not have the reverse effects on the neuromuscular blockade of d-TC, the effect of NF449 seems irrelevant to inhibition of P2X receptors.SignificanceThese data suggest that NF449 was able to compete with the binding of d-TC on the nicotinic ACh receptors, and the effect of NF449 was more potent than suramin in reducing the inhibition of d-TC. The structure of NF449 may provide useful information for designing potent antidotes against neuromuscular toxins.  相似文献   

3.
P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin.  相似文献   

4.
Desensitization masks nanomolar potency of ATP for the P2X1 receptor   总被引:3,自引:0,他引:3  
ATP-gated P2X1 receptors feature fast activation and fast desensitization combined with slow recovery from desensitized states. Here, we exploited a non-desensitizing P2X2/P2X1 chimera that includes the entire P2X1 ectodomain (Werner, P., Seward, E. P., Buell, G. N., and North, R. A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 15485-15490) to obtain a macroscopic representation of intrinsic receptor kinetics without bias arising from the overlap of channel activation and desensitization. From the stationary currents made amenable to analysis by this chimera, an EC50 for ATP of 3.3 nM was derived, representing a >200- and >7000-fold higher ATP potency than observed for the parental P2X1 and P2X2A receptors, respectively. Also, other agonists activated the P2X2/P2X1 chimera with nanomolar EC50 values ranging from 3.5 to 73 nM in the following rank order: 2-methylthio-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, alpha,beta-methylene-ATP, adenosine 5'-O-(3-thiotriphosphate). Upon washout, the P2X2/P2X1 chimera deactivated slowly with a time constant (ranging from 63 to 2.5 s) that is inversely related to the EC50 value for the corresponding agonist. This suggests that deactivation time courses reflect unbinding rates, which by themselves define agonist potencies. The P2X2/P2X1 chimera and the P2X1 receptor possess virtually identical sensitivity to inhibition by the P2X1 receptor-selective antagonist NF279, a suramin analog. These results suggest that the P2X1 ectodomain confers nanomolar ATP sensitivity, which, within the wild-type P2X1 receptor, is obscured by desensitization such that only a micromolar ATP potency can be deduced from peak current measurements, representing an amalgam of activation and desensitization.  相似文献   

5.
P2X receptor subtypes can be distinguished by their sensitivity to ATP analogues and selective antagonists. We have used chimeras between human P2X1 and P2X2 receptors to address the contribution of the extracellular ligand binding loop, transmembrane segments (TM1 and TM2), and intracellular amino and carboxyl termini to the action of partial agonists (higher potency and efficacy of BzATP and Ap5A at P2X1 receptors) and antagonists. Sensitivity to the antagonists NF449, suramin, and PPADS was conferred by the nature of the extracellular loop (e.g. nanomolar for NF449 at P2X1 and P2X2-1EXT and micromolar at P2X2 and P2X1-2EXT). In contrast, the effectiveness of partial agonists was similar to P2X1 levels for both of the loop transfers, suggesting that interactions with the rest of the receptor played an important role. Swapping TM2 had reciprocal effects on partial agonist efficacy. However, TM1 swaps increased partial agonist efficacy at both chimeras, and this was similar for swaps of both TM1 and 2. Changing the amino terminus had no effect on agonist potency but increased partial agonist efficacy at P2X2-1N and decreased it at P2X1-2N chimeras, demonstrating that potency and efficacy can be independently regulated. Chimeras and point mutations also identified residues in the carboxyl terminus that regulated recovery from channel desensitization. These results show that interactions among the intracellular, transmembrane, and extracellular portions of the receptor regulate channel properties and suggest that transitions to channel opening, the behavior of the open channel, and recovery from the desensitized state can be controlled independently.  相似文献   

6.
Fu XW  Nurse CA  Cutz E 《Biological chemistry》2004,385(3-4):275-284
Adenine nucleotides act through specific cell surface receptors to invoke a variety of biological responses. Here we show that cells of neuroepithelial bodies (NEB), presumed O2 airway sensors in neonatal hamster lung, express functional P2X receptors (P2X-R). Positive immunostaining was detected in NEB cells using double-label immunohistochemistry with antibodies against P2X2 and P2X3 receptor subunits, which co-localized with serotonin (5-HT), a marker of NEB cells. For electrophysiological characterization of P2X2-R in NEB cells, fresh neonatal hamster lung slice preparation was used. Under whole-cell patch clamp, perfusion with ATP induced a concentration-dependent, non-desensitizing inward current (EC50=12 microM). Perfusion with alpha,beta-methylene ATP also induced a slow-desensitizing inward current (EC50=8.2 microM). Suramin (IC50 ca. 43 microM) and TNP-ATP (IC50 ca. 8 microM) blocked the currents evoked by both ATP and alpha,beta-methylene ATP. Using carbon fiber amperometry we observed that hypoxia and ATP induced 5-HT release from NEB cells and that this release was blocked by suramin. These data suggest that functional P2X2/3 heteromeric receptors are expressed in NEB cells. The possible function of these purinoreceptors in NEB cells could include modulation of hypoxia chemotransmission.  相似文献   

7.
ATP, acting through P2X(2)/P2X(3) receptor-channel complexes, plays an important role in carotid body chemoexcitation in response to natural stimuli in the rat. Since the channels are permeable to calcium, P2X activation by ATP should induce changes in intracellular calcium ([Ca(2+)](i)). Here, we describe a novel ex vivo approach using fluorescence [Ca(2+)](i) imaging that allows screening of retrogradely labeled chemoafferent neurons in the petrosal ganglion of the rat. ATP-induced [Ca(2+)](i) responses were characterized at postnatal days (P) 5-8 and P19-25. While all labeled cells showed a brisk increase in [Ca(2+)](i) in response to depolarization by high KCl (60 mM), only a subpopulation exhibited [Ca(2+)](i) responses to ATP. ATP (250-1,000 μM) elicited one of three temporal response patterns: fast (R1), slow (R2), and intermediate (R3). At P5-8, R2 predominated and its magnitude was attenuated 44% by the P2X(1) antagonist, NF449 (10 μM), and 95% by the P2X(1)/P2X(3)/P2X(2/3) antagonist, TNP-ATP (10 μM). At P19-25, R1 and R3 predominated and their magnitudes were attenuated 15% by NF449, 66% by TNP-ATP, and 100% by suramin (100 μM), a nonspecific P2 purinergic receptor antagonist. P2X(1) and P2X(2) protein levels in the petrosal ganglion decreased with development, while P2X(3) protein levels did not change significantly. We conclude that the profile of ATP-induced P2X-mediated [Ca(2+)](i) responses changes in the postnatal period, corresponding with changes in receptor isoform expression. We speculate that these changes may participate in the postnatal maturation of chemosensitivity.  相似文献   

8.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca(2+) mobilization. Based on a mathematical model of purinergic Ca(2+) signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y(2) and P2Y(4) receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca(2+). Cellular responses versus concentration of BzATP, a P2Y(2) agonist and a P2Y(4) antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y(2) and P2Y(11) are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y(2)/P2Y(4) homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y(2) and P2Y(4) receptors operative mostly in the dimeric form.  相似文献   

9.
Extracellular nucleotides regulate epithelial transport via luminal and basolateral P2 receptors. Renal epithelia express multiple P2 receptors, which mediate significant inhibition of solute absorption. Recently, we identified several P2 receptors in the medullary thick ascending limb (mTAL) including luminal and basolateral P2Y(2) receptors (Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J. J Am Soc Nephrol 18: 2062-2070, 2007). In addition, we found evidence for a basolateral P2X receptor. Here, we investigate the effect of basolateral ATP on NaCl absorption in isolated, perfused mouse mTALs using the electrical measurement of equivalent short-circuit current (I'(sc)). Nonstimulated mTALs transported at a rate of 1,197 ± 104 μA/cm(2) (n = 10), which was completely blockable with luminal furosemide (100 μM). Basolateral ATP (100 μM) acutely (1 min) and reversibly reduced the absorptive I'(sc). After 2 min, the reduction amounted to 24.4 ± 4.0% (n = 10). The nonselective P2 receptor antagonist suramin blocked the effect. P2Y receptors were found not to be involved in this effect. The P2X receptor agonist 2-methylthio ATP mimicked the ATP effect, and the P2X receptor antagonist periodate-oxidized ATP blocked it. In P2X(7)(-/-) mice, the ATP effect remained unaltered. In contrast, in P2X(4)(-/-) mice the ATP-induced inhibition of transport was reduced. A comprehensive molecular search identified P2X(4), P2X(5), and P2X(1) receptor subunit mRNA in isolated mouse mTALs. These data define that basolateral ATP exerts a significant inhibition of Na(+) absorption in mouse mTAL. Pharmacological, molecular, and knockout mouse data identify a role for the P2X(4) receptor. We suggest that other P2X subunits like P2X(5) are part of the P2X receptor complex. These data provide the novel perspective that an ionotropic receptor and thus a nonselective cation channel causes transport inhibition in an intact renal epithelium.  相似文献   

10.
The P2X4 receptor (P2X4R) is a member of a family of ATP-gated cation channels that are composed of three subunits. Each subunit has two transmembrane (TM) domains linked by a large extracellular loop and intracellularly located N- and C-termini. The receptors are expressed in excitable and non-excitable cells and have been implicated in the modulation of membrane excitability, calcium signaling, neurotransmitter and hormone release, and pain physiology. P2X4Rs activate rapidly and desensitize within the seconds of agonist application, both with the rates dependent on ATP concentrations, and deactivate rapidly and independently of ATP concentration. Disruption of conserved cysteine ectodomain residues affects ATP binding and gating. Several ectodomain residues of P2X4R were identified as critical for ATP binding, including K67, K313, and R295. Ectodomain residues also account for the allosteric regulation of P2X4R; H140 is responsible for copper binding and H286 regulates receptor functions with protons. Ivermectin sensitized receptors, amplified the current amplitude, and slowed receptor deactivation by binding in the TM region. Scanning mutagenesis of TMs revealed the helical topology of both domains, and suggested that receptor function is critically dependent on the conserved Y42 residue. In this brief article, we summarize this study and re-interpret it using a model based on crystallization of the zebrafish P2X4.1 receptor.  相似文献   

11.
Exogenous ATP induces inward currents and causes the release of arginine-vasopressin (AVP) from isolated neurohypophysial terminals (NHT); both effects are inhibited by the P2X2 and P2X3 antagonists, suramin and PPADS. Here we examined the role of endogenous ATP in the neurohypophysis. Stimulation of NHT caused the release of both AVP and ATP. ATP induced a potentiation in the stimulated release of AVP, but not of oxytocin (OT), which was blocked by the presence of suramin. In loose-patch clamp recordings, from intact neurohypophyses, suramin or PPADS produces an inhibition of action potential currents in a static bath, that can be mimicked by a hyperpolarization of the resting membrane potential (RMP). Correspondingly, in a static versus perfused bath there is a depolarization of the RMP of NHT, which was reduced by either suramin or PPADS. We measured an accumulation of ATP (3.7 +/- 0.7 microM) released from NHT in a static bath. Applications of either suramin or PPADS to a static bath decreased burst-stimulated capacitance increases in NHT. Finally, only vasopressin release from electrically stimulated intact neurohypophyses was reduced in the presence of Suramin or PPADS. These data suggest that there was sufficient accumulation of ATP released from the neurohypophysis during stimulations to depolarize its nerve terminals. This would occur via the opening of P2X2 and P2X3 receptors, inducing an influx of Ca2+. The subsequent elevation in [Ca2+](i) would further increase the stimulated release of only vasopressin from NHT terminals. Such purinergic feedback mechanisms could be physiologically important at most CNS synapses.  相似文献   

12.
The effects of purinergic agonists on insulin release are controversial in the literature. In our studies (mainly using INS-1 cells, but also using rat pancreatic islets), ATP had a dual effect on insulin release depending on the ATP concentration: increasing insulin release (EC50 approximately/= 0.0032 microM) and inhibiting insulin release (EC50 approximately/= 0.32 microM) at both 5.6 and 8.3 mM glucose. This is compatible with the view that either two different receptors are involved, or the cells desensitize and (or) the effect of an inhibitory degradation product such as adenosine (ectonucleotidase effect) emerges. The same dual effects of ATP on insulin release were obtained using rat pancreatic islets instead of INS-1 cells. ADPbetaS, which is less degradable than ATP and rather specific for P2Y1 receptors, had a dual effect on insulin release at 8.3 mM glucose: stimulatory (EC50 approximately/= 0.02 microM) and inhibitory (EC50 approximately/= 0.32 microM). The effectiveness of this compound indicates the possible involvement of a P2Y1 receptor. 2-Methylthio-ATP exhibited an insulinotropic effect at very high concentrations (EC50 approximately/= 15 microM at 8.3 mM glucose). This indicated that distinct P2X or the P2Y1 receptor may be involved in these insulin-secreting cells. UTP increased insulin release (EC50 approximately/= 2 microM) very weakly, indicating that a P2U receptor (P2X3 or possibly a P2Y2 or P2Y4) are not likely to be involved. Suramin (50 microM) antagonized the insulinotropic effect of ATP (0.01 microM) and UTP (0.32 microM). Since suramin is not selective, the data indicated that various P2X and P2Y receptors may be involved. PPADS (100 microM), a P2X and P2Y1,4,6 receptor antagonist, was ineffective using either low or high concentrations of ATP and ADPbetaS, which combined with the suramin data hints at a P2Y receptor effect of the compounds. Adenosine inhibited insulin release in a concentration-dependent manner. DPCPX (100 microM), an adenosine (A1) receptor antagonist, inhibited the inhibitory effects of both adenosine and of high concentrations of ATP. Adenosine deaminase (1 U/mL) abolished the inhibitory effect of high ATP concentrations, indicating the involvement of the degradation product adenosine. Repetitive addition of ATP did not desensitize the stimulatory effect of ATP. U-73122 (2 microM), a PLC inhibitor, abolished the ATP effect at low concentrations. The data indicate that ATP at low concentrations is effective via P2Y receptors and the PLC-system and not via P2X receptors; it inhibits insulin release at high concentrations by being metabolized to adenosine.  相似文献   

13.
P2X receptors play an important role in communication between cells in the nervous system. Therefore, understanding the mechanisms of inhibition of these receptors is important for the development of new tools for drug discovery. Our objective has been to determine the pharmacological activity of the antagonist suramin, the most important antagonist of purinergic receptor function, as well as to demonstrate its noncompetitive inhibition and confirm a competitive mechanism between ATP and TNP-ATP in 1321N1 glial cells stably transfected with the recombinant rat P2X(2) receptor. A radioligand binding assay was employed to determine whether suramin, TNP-ATP, and ATP compete for the same binding site on the receptor. TNP-ATP displaced [alpha-32P]ATP, whereas suramin did not interfere with [alpha-32P]ATP-receptor binding. To determine the inhibition mechanism relevant for channel opening, currents obtained in fast kinetic whole-cell recording experiments, following stimulation of cells by ATP in the presence of suramin, were compared to those obtained by ATP in the presence of TNP-ATP. Supported by a mathematical model for receptor kinetics [Breitinger, H. G., Geetha, N., and Hess, G. P. (2001) Biochemistry 40, 8419-8429], the inhibition factors were plotted as functions of inhibitor or agonist concentrations. Analysis of the data indicated a competitive inhibition mechanism for TNP-ATP and a noncompetitive inhibition for suramin. Taken together, both data support a noncompetitive inhibition mechanism of the rat recombinant P2X(2) receptor by suramin, confirm the competitive inhibition by TNP-ATP, and allow the prediction of a model for P2X(2) receptor inhibition.  相似文献   

14.
Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2X(f)) that was also Ca2+-permeable. The agonist sequence for activation was ATP = αβ-MeATP > BzATP = 2-MeSATP, and P2X(f) was inhibited by suramin, PPADS and TNP-ATP. Activation of P2X(f) attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2X(f) plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2X(f) inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells.  相似文献   

15.
On nociceptive neurons, one important mechanism to generate pain signals is the activation of P2X(3) receptors, which are membrane proteins gated by extracellular ATP. In the presence of the agonist, P2X(3) receptors rapidly desensitize and then recover slowly. One unique property of P2X(3) receptors is the recovery acceleration by extracellular Ca(2+) that can play the role of the gain-setter of receptor function only when P2X(3) receptors are desensitized. To study negatively charged sites potentially responsible for this action of Ca(2+), we mutated 15 non-conserved aspartate or glutamate residues in the P2X(3) receptor ectodomain with alanine and expressed such mutated receptors in human embryonic kidney cells studied with patch clamping. Unlike most mutants, D266A (P2X(3) receptor numbering) desensitized very slowly, indicating that this residue is important for generating desensitization. Recovery appeared structurally distinct from desensitization because E111A and D266A had a much faster recovery and D220A and D289A had a much slower one despite their standard desensitization. Furthermore, E161A, E187A, or E270A mutants showed lessened sensitivity to the action of extracellular Ca(2+), suggesting that these determinants were important for the effect of this cation on desensitization recovery. This study is the first report identifying several negative residues in the P2X(3) receptor ectodomain differentially contributing to the general process of receptor desensitization. At least one residue was important to enable the development of rapid desensitization, whereas others controlled recovery from it or the facilitating action of Ca(2+). Thus, these findings outline diverse potential molecular targets to modulate P2X(3) receptor function in relation to its functional state.  相似文献   

16.
Adenosine triphosphate, acting through purinergic P2X receptors, has been shown to stimulate ventilation and increase carotid body chemoreceptor activity in adult rats. However, its role during postnatal development of the ventilatory response to hypoxia is yet unknown. Using whole body plethysmography, we measured ventilation in normoxia and in moderate hypoxia (12% fraction of inspired O?, 20 min) before and after intraperitoneal injection of suramin (P2X? and P2X? receptor antagonist, 40 mg/kg) in 4-, 7-, 12-, and 21-day-old rats. Suramin reduced baseline breathing (~20%) and the response to hypoxia (~30%) in all rats, with a relatively constant effect across ages. We then tested the effect of the specific P2X? antagonist, A-317491 (150 mg/kg), in rats aged 4, 7, and 21 days. As with suramin, A-317491 reduced baseline ventilation (~55%) and the hypoxic response (~40%) at all ages studied. Single-unit carotid body chemoreceptor activity was recorded in vitro in 4-, 7-, and 21-day-old rats. Suramin (100 μM) and A-317491 (10 μM) significantly depressed the sinus nerve chemosensory discharge rate (~80%) in normoxia (Po? ~150 Torr) and hypoxia (Po? ~60 Torr), and this decrease was constant across ages. We conclude that, in newborn rats, P2X purinergic receptors are involved in the regulation of breathing under basal and hypoxic condition, and P2X?-containing receptors play a major role in carotid body function. However, these effects are not age dependent within the age range studied.  相似文献   

17.
Here we elaborated an analytical approach for the simulation of dose-response curves mediated by cellular receptors coupled to PLC and Ca2+ mobilization. Based on a mathematical model of purinergic Ca2+ signaling in taste cells, the analysis of taste cells responsiveness to nucleotides was carried out. Consistently with the expression of P2Y2 and P2Y4 receptors in taste cells, saturating ATP and UTP equipotently mobilized intracellular Ca2+. Cellular responses versus concentration of BzATP, a P2Y2 agonist and a P2Y4 antagonist, implicated high and low affinity BzATP receptors. Suramin modified the BzATP dose-response curve in a manner that suggested the low affinity receptor to be weakly sensitive to this P2Y antagonist. Given that solely P2Y2 and P2Y11 are BzATP receptors, their high sensitivity to suramin is poorly consistent with the suramin effects on BzATP responses. We simulated a variety of dose-response curves for different P2Y receptor sets and found that the appropriate fit of the overall pharmacological data was achievable only with dimeric receptors modeled as P2Y2/P2Y4 homo- and heterodimers. Our computations and analytical analysis of experimental dose-response curves raise the possibility that ATP responsiveness of mouse taste cells is mediated by P2Y2 and P2Y4 receptors operative mostly in the dimeric form.  相似文献   

18.
Stimulation of P2X receptors by ATP in vascular smooth muscle cells (VSMCs) is proposed to mediate vascular tone. However, understanding of P2X receptor-mediated actions in human blood vessels is limited, and therefore, the current work investigates the role of P2X receptors in freshly isolated small human gastro-omental arteries (HGOAs). Expression of P2X1 and P2X4 receptor subunit messenger RNA (mRNA) and protein was identified in individual HGOA VSMCs using RT-PCR and immunofluorescent analysis and using Western blot in multi-cellular preparations. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l, a selective P2X receptor agonist, evoked robust increases in [Ca2+]i in fluo-3-loaded HGOA VSMCs. Pre-incubation with 1 μmol/l NF279, a selective P2X receptor antagonist, reduced the amplitude of αβ-meATP-induced increase in [Ca2+]i by about 70 %. ATP of 10 μmol/l and αβ-meATP of 10 μmol/l produced similar contractile responses in segments of HGOA, and these contractions were greatly reduced by 2 μmol/l NF449, a selective P2X receptor inhibitor. These data suggest that VSMCs from HGOA express P2X1 and P2X4 receptor subunits with homomeric P2X1 receptors likely serving as the predominant target for extracellular ATP.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9415-6) contains supplementary material, which is available to authorized users.  相似文献   

19.
Rat P2X2 receptors open at an undetectably low rate in the absence of ATP. Furthermore, two allosteric modulators, zinc and acidic pH, cannot by themselves open these channels. We describe here the properties of a mutant receptor, K69C, before and after treatment with the thiol-reactive fluorophore Alexa Fluor 546 C5-maleimide (AM546). Xenopus oocytes expressing unmodified K69C were not activated under basal conditions nor by 1,000 µM ATP. AM546 treatment caused a small increase in the inward holding current which persisted on washout and control experiments demonstrated this current was due to ATP independent opening of the channels. Following AM546 treatment, zinc (100 µM) or acidic external solution (pH 6.5) elicited inward currents when applied without any exogenous ATP. In the double mutant K69C/H319K, zinc elicited much larger inward currents, while acidic pH generated outward currents. Suramin, which is an antagonist of wild type receptors, behaved as an agonist at AM546-treated K69C receptors. Several other cysteine-reactive fluorophores tested on K69C did not cause these changes. These modified receptors show promise as a tool for studying the mechanisms of P2X receptor activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号