首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein N-glycosylation begins with the assembly of a lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER) membrane. The first two steps of LLO biosynthesis are catalyzed by a functional multienzyme complex comprised of the Alg7 GlcNAc phosphotransferase and the heterodimeric Alg13/Alg14 UDP-GlcNAc transferase on the cytosolic face of the ER. In the Alg13/14 glycosyltransferase, Alg14 recruits cytosolic Alg13 to the ER membrane through interaction between their C-termini. Bioinformatic analysis revealed that eukaryotic Alg14 contains an evolved N-terminal region that is missing in bacterial orthologs. Here, we show that this N-terminal region of Saccharomyces cerevisiae Alg14 localize its green fluorescent protein fusion to the ER membrane. Deletion of this region causes defective growth at 38.5°C that can be partially complemented by overexpression of Alg7. Coimmunoprecipitation demonstrated that the N-terminal region of Alg14 is required for direct interaction with Alg7. Our data also show that Alg14 lacking the N-terminal region remains on the ER membrane through a nonperipheral association, suggesting the existence of another membrane-binding site. Mutational studies guided by the 3D structure of Alg14 identified a conserved α-helix involved in the second membrane association site that contributes to an integral interaction and protein stability. We propose a model in which the N- and C-termini of Alg14 coordinate recruitment of catalytic Alg7 and Alg13 to the ER membrane for initiating LLO biosynthesis.  相似文献   

2.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   

3.
N-Glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to man. Here we identify and characterize two essential yeast proteins having homology to bacterial glycosyltransferases, designated Alg13p and Alg14p, as being required for the formation of GlcNAc(2)-PP-dolichol (Dol), the second step in the biosynthesis of the unique lipid-linked core oligosaccharide. Down-regulation of each gene led to a defect in protein N-glycosylation and an accumulation of GlcNAc(1)-PP-Dol in vivo as revealed by metabolic labeling with [(3)H]glucosamine. Microsomal membranes from cells repressed for ALG13 or ALG14, as well as detergent-solubilized extracts thereof, were unable to catalyze the transfer of N-acetylglucosamine from UDP-GlcNAc to [(14)C]GlcNAc(1)-PP-Dol, but did not impair the formation of GlcNAc(1)-PP-Dol or GlcNAc-GPI. Immunoprecipitating Alg13p from solubilized extracts resulted in the formation of GlcNAc(2)-PP-Dol but required Alg14p for activity, because an Alg13p immunoprecipitate obtained from cells in which ALG14 was down-regulated lacked this activity. In Western blot analysis it was demonstrated that Alg13p, for which no well defined transmembrane segment has been predicted, localizes both to the membrane and cytosol; the latter form, however, is enzymatically inactive. In contrast, Alg14p is exclusively membrane-bound. Repression of the ALG14 gene causes a depletion of Alg13p from the membrane. By affinity chromatography on IgG-Sepharose using Alg14-ZZ as bait, we demonstrate that Alg13-myc co-fractionates with Alg14-ZZ. The data suggest that Alg13p associates with Alg14p to a complex forming the active transferase catalyzing the biosynthesis of GlcNAc(2)-PP-Dol.  相似文献   

4.
The second step of dolichol-linked oligosaccharide synthesis in the N-linked glycosylation pathway at the endoplasmic reticulum (ER) membrane is catalyzed by an unusual hetero-oligomeric UDP-N-acetylglucosamine transferase that in most eukaryotes is comprised of at least two subunits, Alg13p and Alg14p. Alg13p is the cytosolic and catalytic subunit that is recruited to the ER by the membrane protein Alg14p. We show that in Saccharomyces cerevisiae, cytosolic Alg13p is very short-lived, whereas membrane-associated Alg13 is relatively stable. Cytosolic Alg13p is a target for proteasomal degradation, and the failure to degrade excess Alg13p leads to glycosylation defects. Alg13p degradation does not require ubiquitin but instead, requires a C-terminal domain whose deletion results in Alg13p stability. Conversely, appending this sequence onto normally long-lived beta-galactosidase causes it to undergo rapid degradation, demonstrating that this C-terminal domain represents a novel and autonomous degradation motif. These data lead to the model that proteasomal degradation of excess unassembled Alg13p is an important quality control mechanism that ensures proper protein complex assembly and correct N-linked glycosylation.  相似文献   

5.
N-linked glycosylation begins in the endoplasmic reticulum with the synthesis of a highly conserved dolichol-linked oligosaccharide precursor. The UDP-GlcNAc glycosyltransferase catalyzing the second sugar addition of this precursor consists in most eukaryotes of at least two subunits, Alg14 and Alg13. Alg14 is a membrane protein that recruits the soluble Alg13 catalytic subunit from the cytosol to the face of the endoplasmic reticulum (ER) membrane where this reaction occurs. Here, we investigated the membrane topology of Saccharomyces cerevisiae Alg14 and its requirements for ER membrane association. Alg14 is predicted by most algorithms to contain one or more transmembrane spanning helices (transmembrane domains (TMDs)). We provide evidence that Alg14 contains a C-terminal cytosolic tail and an N terminus that resides within the ER lumen. However, we also demonstrate that Alg14 lacking this TMD is functional and remains peripherally associated with ER membranes, suggesting that additional domains can mediate ER association. These conclusions are based on the functional analysis of Alg13/Alg14 chimeras containing Alg13 fused at either end of Alg14 or truncated Alg14 variants lacking the predicted TMD; protease protection assays of Alg14 in intact ER membranes; and extraction of Alg14-containing ER membranes with high pH. These yeast Alg13-Alg14 chimeras recapitulate the phylogenetic diversity of Alg13-Alg14 domain arrangements that evolved in some protozoa. They encode single polypeptides containing an Alg13 domain fused to Alg14 domain in either orientation, including those lacking the Alg14 TMD. Thus, this Alg13-Alg14 UDP-GlcNAc transferase represents an unprecedented example of a bipartite glycosyltransferase that evolved by both fission and fusion.  相似文献   

6.
The solution structure of Alg13, the glycosyl donor-binding domain of an important bipartite glycosyltransferase in the yeast Saccharomyces cerevisiae, is presented. This glycosyltransferase is unusual in that it is active only in the presence of a binding partner, Alg14. Alg13 is found to adopt a unique topology among glycosyltransferases. Rather than the conventional Rossmann fold found in all GT-B enzymes, the N-terminal half of the protein is a Rossmann-like fold with a mixed parallel and antiparallel beta sheet. The Rossmann fold of the C-terminal half of Alg13 is conserved. However, although conventional GT-B enzymes usually possess three helices at the C terminus, only two helices are present in Alg13. Titration of Alg13 with both UDP-GlcNAc, the native glycosyl donor, and a paramagnetic mimic, UDP-TEMPO, shows that the interaction of Alg13 with the sugar donor is primarily through the residues in the C-terminal half of the protein.  相似文献   

7.
Gao XD  Nishikawa A  Dean N 《Glycobiology》2004,14(6):559-570
The early steps of N-linked glycosylation involve the synthesis of a lipid-linked oligosaccharide, Glc(3)Man(9)GlcNAc(2)-PP-dolichol, on the endoplasmic reticulum (ER) membrane. Prior to its lumenal translocation and transfer to nascent glycoproteins, mannosylation of Man(5)GlcNAc(2)-PP-dolichol is catalyzed by the Alg1, Alg2, and Alg11 mannosyltransferases. We provide evidence for a physical interaction between these proteins. Using a combination of biochemical and genetic assays, two distinct complexes that contain multiple copies of Alg1 were identified. The two Alg1-containing complexes differ from one another in that one complex contains Alg2 and the other contains Alg11. Alg1 self-assembles through a C-terminal domain that is distinct from the region required for its association with Alg2 or Alg11. Missense mutations affecting catalysis but not Alg1 protein stability or assembly with Alg2 or Alg11 were also identified. Overexpression of these catalytically inactive alleles resulted in dominant negative phenotypes, providing genetic evidence for functional Alg1-containing complexes in vivo. These data suggest that an additional level of regulation that ensures the fidelity of complex oligosaccharide structures involves the physical association of the related catalytic enzymes in the ER membrane.  相似文献   

8.
BackgroundThe pathogenic potential of Candida albicans depends on adhesion to the host cells mediated by highly glycosylated adhesins, hyphae formation and growth of biofilm. These factors require effective N-glycosylation of proteins.Here, we present consequences of up- and down-regulation of the newly identified ALG13 gene encoding N-acetylglucosaminyl transferase, a potential member of the Alg7p/Alg13p/Alg14p complex catalyzing the first two initial reactions in the N-glycosylation process.MethodsWe constructed C. albicans strain alg13 ∆::hisG/TRp-ALG13 with one allele of ALG13 disrupted and the other under the control of a regulatable promoter, TRp. Gene expression and enzyme activity were measured using RT-qPCR and radioactive substrate. Cell wall composition was estimated by HPLC DIONEX. Protein glycosylation status was analyzed by electrophoresis of HexNAcase, a model N-glycosylated protein in C. albicans.ResultsBoth decreased and elevated expression of ALG13 changed expression of all members of the complex and resulted in a decreased activity of Alg7p and Alg13p and under-glycosylation of HexNAcase. The alg13 strain was also defective in hyphae formation and growth of biofilm. These defects could result from altered expression of genes encoding adhesins and from changes in the carbohydrate content of the cell wall of the mutant.General significanceThis work confirms the important role of protein N-glycosylation in the pathogenic potential of C. albicans.  相似文献   

9.
10.
All members of a glucuronyltransferase (GlcAT) gene family cloned to date contain four conserved regions (modules I-IV), which are widely located in the catalytic domain. In order to understand the biological significance of these modules, we investigated the structure-function relationship of GlcAT-P by means of the combination of site-directed mutagenesis and computer aided three-dimensional modeling. The wild-type and mutant GlcAT-Ps were expressed in Escherichia coli as glutathione-S-transferase (GST)-fused soluble proteins. Most of the mutants in which a polar amino acid within the modules was replaced with alanine lost their transferase activity almost completely, while all of the mutants in which the replacement was outside these modules retained the original catalytic activity. A three-dimensional (3-D) model of GlcAT-P was constructed by computer simulation with the three-dimensional structure of adenylate kinase (1AKE) as a template. This model predicted that the large catalytic domain of GlcAT-P forms a globular shape with a Rossmann-fold motif consisting of five alpha-helix and beta-sheet repeats. The putative catalytic pocket consisting mainly of modules I-III is surrounded by a cluster of polar amino acids, which are essential for the transferase activity and also for the binding to the acceptor substrate (essential amino acids), asialo-orosomucoid. There is the second cluster of essential amino acids almost on the opposite surface of the molecule, in which an aspartic acid repeat (DDD) is located. The biological significance of the second cluster is currently not clear but it may be associated with the interaction of the enzyme with modulation molecules, manganese and membrane phospholipids.  相似文献   

11.
The Listeria monocytogenes surface protein ActA is an important virulence factor that plays an essential role in intracellular movement of Listeria cells by inducing actin polymerisation. The ActA protein is known to interact with several mammalian proteins including the phosphoprotein VASP, actin and the Arp2/3 complex. In a search for additional ActA-binding proteins we recently employed the yeast two-hybrid system to search for proteins that interact with ActA, and identified, among others, the mammalian protein LaXp180 as a binding partner. In the present study the interaction of the two proteins was investigated in more detail. A number of variants were tested in the yeast two-hybrid system for their ability to interact. On the basis of these assays, the 14 C-terminal amino acids of LaXp180 were identified as being necessary for the interaction with ActA. The proline-rich repeat (PRR) region of ActA was found to be necessary for the interaction with LaXp180, but upstream or downstream sequences are also required to enhance the specificity of the interaction. The second and third repeats in ActA are especially important, and the minimal sequence of ActA capable of interacting with LaXp180 was a proline- and glutamate-rich stretch of PRR3 fused to part of the N-terminal sequence of ActA. Further analysis using site-specific mutations located in either the C-terminal region of LaXp180 or the proline-rich motif of PRR3 of ActA showed that three positively charged amino acids in LaXp180 and two negatively charged amino acids in ActA are critical for the interaction of the two proteins.  相似文献   

12.
A CB1 cannabinoid receptor peptide fragment from the C-terminal juxtamembrane region autonomously inhibits adenylyl cyclase activity in a neuroblastoma membrane preparation. The cannabinoid receptor antagonist, SR141716A, failed to block the response. The peptide was able to evoke the response in membranes from Chinese hamster ovary (CHO) cells that do not express the CB1 receptor. These studies are consistent with a direct activation of Gi by the peptide. To test the importance of a BXBXXB sequence, Lys403 was acetylated, resulting in a peptide having similar affinity but reduced efficacy. N-Terminal truncation of Arg401 resulted in a 6-fold loss of affinity, which was not further reduced by sequential truncation of up to the first seven amino acids, four of which are charged. N-Terminal-truncated peptides exhibited maximal activity, suggesting that Gi activation can be conferred by the remaining amino acids. Truncation of the C-terminal Glu417 or substitution of Glu417 by a Leu or of Arg401 by a Norleucine reduced activity at 100 microM. The C-terminal juxtamembrane peptide was constrained to a loop peptide by placement of Cys residues at both terminals and disulfide coupling. This modification reduced the affinity 3-fold but yielded near-maximal efficacy. Blocking the Cys termini resulted in a loss of efficacy. Circular dichroism spectropolarimetry revealed that all C-terminal juxtamembrane peptide analogues exist in a random coil conformation in an aqueous environment. A hydrophobic environment (trifluoroethanol) failed to induce alpha-helix formation in the C-terminal juxtamembrane peptide but did so in less active peptides. The anionic detergent sodium dodecyl sulfate induced alpha-helix formation in all analogues except the loop peptide, where it induces a left-handed PII conformation. It is concluded that alpha-helix formation is not required for Gi activation.  相似文献   

13.
Eps15 homology (EH) domains are protein interaction modules that recognize Asn-Pro-Phe (NPF) motifs in their biological ligands to mediate critical events during endocytosis and signal transduction. To elucidate the structural basis of the EH-NPF interaction, the solution structures of two EH-NPF complexes were solved using NMR spectroscopy. The first complex contains a peptide representing the Hrb C-terminal NPFL motif; the second contains a peptide in which an Arg residue substitutes the C-terminal Leu. The NPF residues are almost completely embedded in a hydrophobic pocket on the EH domain surface and the backbone of NPFX adopts a conformation reminiscent of the Asx-Pro type I beta-turn motif. The residue directly following NPF is crucial for recognition and is required to complete the beta-turn. Five amino acids on the EH surface mediate specific recognition of this residue through hydrophobic and electrostatic contacts. The complexes explain the selectivity of the second EH domain of Eps15 for NPF over DPF motifs and reveal a critical aromatic interaction that provides a conserved anchor for the recognition of FW, WW, SWG and HTF ligands by other EH domains.  相似文献   

14.
Solution structure of the human immunodeficiency virus type 1 p6 protein   总被引:1,自引:0,他引:1  
The human immunodeficiency virus type 1 p6 protein represents a docking site for several cellular and viral binding factors and fulfills major roles in the formation of infectious viruses. To date, however, the structure of this 52-amino acid protein, by far the smallest lentiviral protein known, either in its mature form as free p6 or as the C-terminal part of the Pr55 Gag polyprotein has not been unraveled. We have explored the high resolution structure and folding of p6 by CD and NMR spectroscopy. Under membranous solution conditions, p6 can adopt a helix-flexible helix structure; a short helix-1 (amino acids 14-18) is connected to a pronounced helix-2 (amino acids 33-44) by a flexible hinge region. Thus, p6 can be subdivided into two distinct structural and functional domains; helix-2 perfectly defines the region that binds to the virus budding factor AIP-1/ALIX, indicating that this structure is required for interaction with the endosomal sorting complex required for transport. The PTAP motif at the N terminus, comprising the primary late assembly domain, which is crucial for interaction with another cellular budding factor, Tsg101, does not exhibit secondary structure. However, the adjacent helix-1 may play an indirect role in the specific complex formation between p6 and the binding groove in Tsg101. Moreover, binding studies by NMR demonstrate that helix-2, which also comprises the LXXLF motif required for incorporation of the human immunodeficiency virus type 1 accessory protein Vpr into budding virions, specifically interacts with the Vpr binding region, indicating that under the specific solution conditions used for structure analysis, p6 adopted a functional conformation.  相似文献   

15.
Kask L  Hillarp A  Ramesh B  Dahlbäck B  Blom AM 《Biochemistry》2002,41(30):9349-9357
C4b-binding protein (C4BP), an important inhibitor of complement activation, has a unique spider-like shape. It is composed of six to seven identical alpha-chains with or without a single beta-chain, the chains being linked by disulfide bridges in their C-terminal parts. To elucidate the structural requirements for the assembly of the alpha-chains, recombinant C4BP was expressed in HEK 293 cells. The expressed C4BP was found to contain six disulfide-linked alpha-chains. Pulse-chase analysis demonstrated that the recombinant C4BP was rapidly synthesized in the cells and the polymerized C4BP appeared in the medium after 40 min. The alpha-chains were polymerized in the endoplasmic reticulum (ER) already after 5 min chase. The polymerization process was unaffected by blockage of the transport from the ER to the Golgi mediated by brefeldin A or low temperature (10 degrees C). The C-terminal part of the alpha-chain (57 amino acids), containing 2 cysteine residues and an amphiphatic alpha-helix region, was required for the polymerization. We constructed and expressed several mutants of C4BP that lacked the cysteine residues and/or were truncated at various positions in the C-terminal region. Gel filtration analysis of these variants demonstrated the whole alpha-helix region to be required for the formation of stable polymers of C4BP, which were further stabilized by the formation of disulfide bonds.  相似文献   

16.
The seryl-tRNA synthetase from Saccharomyces cerevisiae interacts with the peroxisome biogenesis-related factor Pex21p. Several deletion mutants of seryl-tRNA synthetase were constructed and inspected for their ability to interact with Pex21p in a yeast two-hybrid assay, allowing mapping of the synthetase domain required for complex assembly. Deletion of the 13 C-terminal amino acids abolished Pex21p binding to seryl-tRNA synthetase. The catalytic parameters of purified truncated seryl-tRNA synthetase, determined in the serylation reaction, were found to be almost identical to those of the native enzyme. In vivo loss of interaction with Pex21p was confirmed in vitro by coaffinity purification. These data indicate that the C-terminally appended domain of yeast seryl-tRNA synthetase does not participate in substrate binding, but instead is required for association with Pex21p. We further determined that Pex21p does not directly bind tRNA, and nor does it possess a tRNA-binding motif, but it instead participates in the formation of a specific ternary complex with seryl-tRNA synthetase and tRNA(Ser), strengthening the interaction of seryl-tRNA synthetase with its cognate tRNA(Ser).  相似文献   

17.
The yeast Saccharomyces cerevisiae vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex responsible for acidifying intracellular organelles and is highly regulated. One of the regulatory subunits, subunit H, is encoded by the VMA13 gene in yeast and is composed of two domains, the N-terminal domain (amino acids (aa) 1-352) and the C-terminal domain (aa 353-478). The N-terminal domain is required for the activation of the complex, whereas the C-terminal domain is required for coupling ATP hydrolysis to proton translocation (Liu, M., Tarsio, M., Charsky, C. M., and Kane, P. M. (2005) J. Biol. Chem. 280, 36978-36985). Experiments with epitope-tagged copies of Vma13p revealed that there is only one copy of Vma13p/subunit H per V-ATPase complex. Analysis of the N-terminal domain shows that the first 179 amino acids are not required for the activation and full function of the V-ATPase complex and that the minimal region of Vma13p/subunit H capable of activating the V-ATPase is aa 180-353 of the N-terminal domain. Subunit H is expressed as two splice variants in mammals, and deletion of 18 amino acids in yeast Vma13p corresponding to the mammalian subunit H beta isoform results in reduced V-ATPase activity and significantly lower coupling of ATPase hydrolysis to proton translocation. Intriguingly, the yeast Vma13p mimicking the mammalian subunit H beta isoform is functionally equivalent to Vma13p lacking the entire C-terminal domain. These results suggest that the mammalian V-ATPase complexes with subunit H splice variant SFD-alpha or SFD-beta are likely to have different activities and may perform distinct cellular functions.  相似文献   

18.
MHC class I molecules usually bind short peptides of 8-10 amino acids, and binding is dependent on allele-specific anchor residues. However, in a number of cellular systems, class I molecules have been found containing peptides longer than the canonical size. To understand the structural requirements for MHC binding of longer peptides, we used an in vitro class I MHC folding assay to examine peptide variants of the antigenic VSV 8 mer core peptide containing length extensions at either their N or C terminus. This approach allowed us to determine the ability of each peptide to productively form Kb/beta2-microglobulin/peptide complexes. We found that H-2Kb molecules can accommodate extended peptides, but only if the extension occurs at the C-terminal peptide end, and that hydrophobic flanking regions are preferred. Peptides extended at their N terminus did not promote productive formation of the trimolecular complex. A structural basis for such findings comes from molecular modeling of a H-2Kb/12 mer complex and comparative analysis of MHC class I structures. These analyses revealed that structural constraints in the A pocket of the class I peptide binding groove hinder the binding of N-terminal-extended peptides, whereas structural features at the C-terminal peptide residue pocket allow C-terminal peptide extensions to reach out of the cleft. These findings broaden our understanding of the inherent peptide binding and epitope selection criteria of the MHC class I molecule. Core peptides extended at their N terminus cannot bind, but peptide extensions at the C terminus are tolerated.  相似文献   

19.
Loss of parkin function is linked to autosomal recessive juvenile parkinsonism. Here we show that proteotoxic stress and short C-terminal truncations induce misfolding of parkin. As a consequence, wild-type parkin was depleted from a high molecular weight complex and inactivated by aggregation. Similarly, the pathogenic parkin mutant W453Stop, characterized by a C-terminal deletion of 13 amino acids, spontaneously adopted a misfolded conformation. Mutational analysis indicated that C-terminal truncations exceeding 3 amino acids abolished formation of detergent-soluble parkin. In the cytosol scattered aggregates of misfolded parkin contained the molecular chaperone Hsp70. Moreover, increased expression of chaperones prevented aggregation of wild-type parkin and promoted folding of the W453Stop mutant. Analyzing parkin folding in vitro indicated that parkin is aggregation-prone and that its folding is dependent on chaperones. Our study demonstrates that C-terminal truncations impede parkin folding and reveal a new mechanism for inactivation of parkin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号