首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effects of early and delayed weaning on the development of the rat pancreatic muscarinic receptors. Weaning after 12, 14 and 16 complete days resulted in significantly increased concentrations of muscarinic receptors. Milk feeding, as the exclusive source of food, from day 12 to 23, 25 or 28, was associated with slight non significant decreases in receptor concentration. In both instances, early or delayed weaning, the apparent KDs of (3H-QNB binding were not affected. It is suggested that early solid food intake can modulate rapidly the pancreatic muscarinic receptor population while exclusive milk feeding does not seem to influence the dynamic of the muscarinic receptor population.  相似文献   

2.
Anomalous neuritogenesis is a hallmark of neurodegenerative disorders, including retinal degenerations, epilepsy, and Alzheimer's disease. The neuritogenesis processes result in a partial reinnervation, new circuitry, and functional changes within the deafferented retina and brain regions. Using the light-induced retinal degeneration (LIRD) mouse model, which provides a unique platform for exploring the mechanisms underlying neuritogenesis, we found that retinoid X receptors (RXRs) control neuritogenesis. LIRD rapidly triggered retinal neuron neuritogenesis and up-regulated several key elements of retinoic acid (RA) signaling, including retinoid X receptors (RXRs). Exogenous RA initiated neuritogenesis in normal adult retinas and primary retinal cultures and exacerbated it in LIRD retinas. However, LIRD-induced neuritogenesis was partly attenuated in retinol dehydrogenase knockout (Rdh12(-/-)) mice and by aldehyde dehydrogenase inhibitors. We further found that LIRD rapidly increased the expression of glutamate receptor 2 and β Ca(2+)/calmodulin-dependent protein kinase II (βCaMKII). Pulldown assays demonstrated interaction between βCaMKII and RXRs, suggesting that CaMKII pathway regulates the activities of RXRs. RXR antagonists completely prevented and RXR agonists were more effective than RA in inducing neuritogenesis. Thus, RXRs are in the final common path and may be therapeutic targets to attenuate retinal remodeling and facilitate global intervention methods in blinding diseases and other neurodegenerative disorders.  相似文献   

3.
The role of muscarinic receptors in the down‐regulation of acetylcholine (ACh) release from the locust forewing stretch receptor neuron (fSR) terminals has been investigated. Electrical stimulation of the fSR evokes monosynaptic excitatory postsynaptic potentials (EPSPs) in the first basalar motoneuron (BA1), produced mainly by the activation of postsynaptic nicotinic cholinergic receptors. The general muscarinic antagonists scopolamine (10−6 M) and atropine (10−8 to 10−6 M) caused a reversible increase in the amplitude of electrically evoked EPSPs. However, scopolamine (10−6 M) caused a slight depression in the amplitude of responses to ACh pressure‐applied to the soma of BA1. These observations indicate that the EPSP amplitude enhancement is due to the blockade of muscarinic receptors on neurons presynaptic to BA1. The muscarinic receptors may be located on the fSR itself and act as autoreceptors, and/or they may be located on GABAergic interneurons which inhibit ACh release from the fSR. Electron microscopical immunocytochemistry has revealed that GABA‐immunoreactive neurons make presynaptic inputs to the fSR. The GABA antagonist picrotoxin (10−6 M) caused a reversible increase in the EPSP amplitude, which does not appear to be due to an increase in sensitivity of BA1 to ACh, as picrotoxin (10−6 M) slightly decreased ACh responses recorded from BA1. Application of scopolamine (10−6 M) to a preparation preincubated with picrotoxin did not cause the EPSP amplitude enhancement normally seen in control experiments; in fact, it caused a slight depression. This indicates that at least some of the presynaptic muscarinic receptors are located on GABAergic interneurons that modulate transmission at the fSR/BA1 synapse. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 420–431, 1999  相似文献   

4.
5.
Calf forebrain homogenates contain 2.8 pM muscarinic acetylcholine receptors per mg of protein. [3H]Antagonist saturation binding experiments under equilibrium conditions revealed a single class of sites with equilibrium dissociation constants of 0.82 nM for [3H]dexetimide and 0.095 nM for [3H]quinuclidinyl benzilate. Displacement binding studies with agonists revealed the presence of low and high affinity sites. Here we describe the solubilization of muscarinic acetylcholine receptors with digitonin and their purification by affinity chromatography using an affinity gel which consisted of dexetimide coupled to Affi-Gel 10 (i.e., carboxy N-hydroxysuccinimide esters linked via a 1 nm spacer arm to agarose beads). Purified proteins were obtained by specific elution with muscarinic drugs, i.e., the antagonist atropine and the irreversible ligand propylbenzilylcholine mustard. SDS-polyacrylamide gel electrophoresis of the radioiodinated purified preparations revealed a major 70-K protein.  相似文献   

6.
Binding of GTP and its analogue, guanosine 5′-O-[γ-thio]triphosphate (GTP[S]) to G-proteins, and release of GTP[S] from G-proteins are stimulated by muscarinic acetylcholine (mACh) receptors in intact cardiac membranes. Upon solubilization of receptors and G-proteins by membrane extraction with the detergent, 3-[(cholamidopropyl)dimethylammonio]-1-propanesulphonate, followed by sucrose density gradient centrifugation, agonist-liganded mACh receptors stimulated binding of GTP[S] and hydrolysis of GTP by G-proteins with similar requirements as in intact membranes. One soluble agonist-activated mACh receptor induced binding of GTP[S] to several (about seven) soluble G-proteins. In contrast to intact membranes, however, agonist activation of mACh receptors did not induce release of GTP[S] from solubilized G-proteins. The data presented indicate that mACh receptors can interact with and efficiently activate G-proteins even in solution, whereas the possible interaction of receptors with GTP[S]-liganded G-proteins observed in intact membranes is lost upon solubilization of these components.  相似文献   

7.
The role of muscarinic receptors in the down-regulation of acetylcholine (ACh) release from the locust forewing stretch receptor neuron (fSR) terminals has been investigated. Electrical stimulation of the fSR evokes monosynaptic excitatory postsynaptic potentials (EPSPs) in the first basalar motoneuron (BA1), produced mainly by the activation of postsynaptic nicotinic cholinergic receptors. The general muscarinic antagonists scopolamine (10(-6) M) and atropine (10(-8) to 10(-6) M) caused a reversible increase in the amplitude of electrically evoked EPSPs. However, scopolamine (10(-6) M) caused a slight depression in the amplitude of responses to ACh pressure-applied to the soma of BA1. These observations indicate that the EPSP amplitude enhancement is due to the blockade of muscarinic receptors on neurons presynaptic to BA1. The muscarinic receptors may be located on the fSR itself and act as autoreceptors, and/or they may be located on GABAergic interneurons which inhibit ACh release from the fSR. Electron microscopical immunocytochemistry has revealed that GABA-immunoreactive neurons make presynaptic inputs to the fSR. The GABA antagonist picrotoxin (10(-6) M) caused a reversible increase in the EPSP amplitude, which does not appear to be due to an increase in sensitivity of BA1 to ACh, as picrotoxin (10(-6) M) slightly decreased ACh responses recorded from BA1. Application of scopolamine (10(-6) M) to a preparation preincubated with picrotoxin did not cause the EPSP amplitude enhancement normally seen in control experiments; in fact, it caused a slight depression. This indicates that at least some of the presynaptic muscarinic receptors are located on GABAergic interneurons that modulate transmission at the fSR/BA1 synapse.  相似文献   

8.
The effects of apomorphine on the binding properties of striatal muscarinic receptors were investigated using the specific muscarinic antagonist, [3H](?)3-quinuclidinyl benzilate ([3H](?)QNB). When binding measurements were made in 50 mM sodium/HEPES buffer, pH 7.4, containing Mg+2, the binding of [3H](?)QNB was consistent with the presence of two binding sites; 57% of the sites had a high affinity dissociation constant of 0.030 nM whereas the remaining sites had a low affinity dissociation constant of 0.64 nM. Apomorphine (1.0 μM) enhanced the binding of [3H](?)QNB by an apparent conversion of low to high affinity sites. A variety of other agents were screened for their ability to enhance [3H](?)QNB binding, and a pattern generally consistent with a dopaminergic effect was observed although some evidence for a β-adrenergic effect was demonstrable. The potent neuroleptics haloperidol, spiperone and sulpiride failed to antagonize the apomorphine enhancement of [3H](?)QNB binding as well as some adrenergic antagonists. However, the potent inhibitors of the dopamine-sensitive adenylate cyclase, α-flupenthixol and fluphenazine, specifically blocked the apomorphine enhancement of [3H](?)QNB binding with Ki values of approximately 0.1 μM.  相似文献   

9.
Based on the finding that G protein-coupled receptors (GPCRs) can induce Ca2+ mobilization, apparently independent of the phospholipase C (PLC)/inositol-1,4,5-trisphosphate (IP3) pathway, we investigated whether sphingosine kinase, which generates sphingosine-1-phosphate (SPP), is involved in calcium signaling by mAChR and other GPCRs. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,/N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by M2 and M3 mAChRs in HEK-293 cells without affecting PLC activation. Activation of M2 and M3 mAChR rapidly and transiently stimulated production of SPP. Furthermore, microinjection of SPP into HEK-293 cells induced rapid and transient Ca2+ mobilization. Pretreatment of HEK-293 cells with the calcium chelator BAPTA/AM fully blocked mAChR-induced SPP production. On the other hand, incubation of HEK-293 cells with calcium ionophores activated SPP production. Similar findings were obtained for formyl peptide and P2Y2 purinergic receptors in HL-60 cells. On the basis of these studies we propose, that following initial IP3 production by receptor-mediated PLC activation, a local discrete increase in [Ca2+]i induces sphingosine kinase stimulation, which ultimately leads to full calcium mobilization. Thus, sphingosine kinase activation most likely represents an amplification system for calcium signaling by mAChRs and other GPCRs.  相似文献   

10.
Spalding TA  Burstein ES 《Life sciences》2001,68(22-23):2511-2516
Mutations that increase constitutive activity and alter ligand binding have been used to investigate the structure and mechanism of activation of muscarinic receptors. These data are reviewed with reference to the recently published three-dimensional structure of rhodopsin. Residues in TM3 and TM6 where amino acid substitutions increased constitutive activity align with residues within the core of the receptor. A nucleus of these residues is located immediately below the predicted binding site of acetylcholine. The i2 loop where mutations also increase constitutive activity was found to loop away from the i3 loop, which has been found to modulate G-protein coupling specificity.  相似文献   

11.
The aim of the present work was to assess whether Akt modulates NMDA receptor function in cerebellar neurons in culture. Forskolin increases cAMP and activates Akt and NMDA receptors. In neurons treated with forskolin, intracellular calcium increased to 296 +/- 38% and this was completely prevented by inhibition of Akt. This indicates that, in these neurons, cAMP modulates NMDA receptors via Epac and Akt. Brain derived neurotrophic factor (BDNF) increases phosphorylation (and activity) of Akt to 350 +/- 60% of basal and also potentiates the increase of calcium and in cGMP induced by NMDA. BDNF-induced potentiation of NMDA receptor function is completely prevented by inhibition of PI3 kinase or of Akt. This indicates that BDNF modulates NMDA receptor function via PI3 kinase and Akt. Activation of NMDA receptors also leads to phosphorylation and activation of Akt which, in turn, potentiates NMDA receptor activation. The results reported indicate that when Akt activity increases the activation of NMDA receptors by its agonists also increases. Akt may play important roles in the modulation of NMDA receptor responses by other neurotransmitters and modulators and in the adaptation of NMDA receptor function to the physiological environmental conditions.  相似文献   

12.
Treatment of mouse cortical brain membranes with dioleoylphosphatidylcholine produced a large (50%) decrease in serotonin binding sites. The time course for this effect paralleled an increase in oleic acid in membrane phosphatidycholine and an increase in membrane fluidity. “Active Lipid” produced a similar decrease in serotonin binding sites, while fluidizing the membranes even more strongly. Distearoylphosphatidylcholine had no effect on serotonin binding sites or membrane fluidity by itself, but was capable of counteracting both the reduction in binding sites and membrane fluidity produced by “Active Lipid”. The data indicate that specific phosphatidylcholines can have profound effects on serotonin receptors, but a clear picture of the relative importance of membrane fluidity per se versus more specific phospholipid effects will require further investigation.  相似文献   

13.
14.
Muscarinic receptors have been characterized in smooth muscle and brain by the binding of reversible (e.g. atropine, quinuclidinylbenzylate) or irreversible (benzilylcholine or propylbenzilylcholine mustards) ligands. There is a close correlation between affinity constants derived from binding experiments and the affinities of muscarinic ligands for these sites obtained in pharmacological experiments on smooth muscle. Whereas atropine shows a single high affinity binding component (in subcellular preparations) several other ligands (QNB, ACh, oxotremorine) show multiple affinity binding. This indicated the existence of several types of binding sides which show selectivity toward certain cholinergic effectors. Most detergents inhibit the binding of ligands to the receptor site and therefore cannot be used to solubilize the receptor protein from the membrane. Treatment of brain subcellular membrane preparations with high salt concentrations (2M NaI) solubilize proteins which possess the muscarinic ligand binding properties observed in the membrane preparation. The affinities for muscarinic antagonists however are decreased, which suggests that a conformational change occurs in the protein upon solubilization.  相似文献   

15.
Constitutive activity of muscarinic acetylcholine receptors   总被引:2,自引:0,他引:2  
We review the literature describing constitutive activity of the five muscarinic acetylcholine receptors in native and recombinant systems and discuss the effect of constitutive activity on muscarinic pharmacology in the context of modern models of receptor activation. We include a summary of mutations found to cause constitutive activity and discuss the implications of these data for the structure, function, and activation mechanism of muscarinic receptors. Finally, we discuss the possible physiological significance of constitutive activity of muscarinic receptors, incorporating information provided by targeted deletion of each of the muscarinic subtypes.  相似文献   

16.
《Journal of Physiology》1998,92(3-4):265-268
The structural basis underlying the G protein coupling selectivity of different muscarinic receptor subtypes was analyzed by using a combined molecular genetic/biochemical approach. These studies led to the identification of key residues on the receptors as well as the associated G proteins that are critically involved in determining proper receptor/G protein recognition. Mutational analysis of the m3 muscarinic receptor showed that most native cysteine residues are not required for productive receptor/G protein coupling. The putative extracellular disulfide bond was found to be essential for efficient trafficking of the receptor protein to the cell surface but not for receptor-mediated G protein activation.  相似文献   

17.
18.
Endocytosis and recycling of muscarinic receptors   总被引:3,自引:0,他引:3  
Agonist stimulation causes the endocytosis of many G protein-coupled receptors, including muscarinic acetylcholine receptors. In this study we have investigated the agonist-triggered trafficking of the M3 muscarinic receptor expressed in SH-SY5Y human neuroblastoma cells. We have compared the ability of a series of agonists to generate the second messenger Ins(1,4,5)P3 with their ability to stimulate receptor endocytosis. We show that there is a good correlation between the intrinsic activity of the agonists and their ability to increase the rate constant for receptor endocytosis. Furthermore, on the basis of our results, we predict that even very weak partial agonists should under some circumstances be able to cause substantial receptor internalization. Receptor endocytosis occurs too slowly to account for the rapid desensitization of the Ca2+ response to carbachol. Instead, receptor endocytosis and recycling appear to play an important role in resensitization. After an initial agonist challenge, the response to carbachol is fully recovered when only about half of the receptors have been recycled to the cell surface, suggesting that there is a receptor reserve of about 50%. Removal of this reserve by receptor alkylation significantly reduces the extent of resensitization. Resensitization is also reduced by inhibitors of either endocytosis alone (concanavalin A) or of endocytosis and recycling (nigericin). Finally, the protein phosphatase inhibitor calyculin A also reduces resensitization, possibly by blocking the dephosphorylation of the receptors in an endosomal compartment.  相似文献   

19.
Changes in the endocannabinoid system are implicated in numerous diseases, making it an attractive target for pharmaceutical development. The endocannabinoid receptors have traditionally been thought to act through the effects of lipophilic messengers called cannabinoids. The exciting finding of endocannabinoid system modulation by the nonapeptide hemopressin and its N-terminal extensions has highlighted the complexity of cannabinoid biology and pharmacology and sparked interest for therapeutic purposes. However, many questions surrounding the generation and regulation of the hemopressin peptides, the self-assembly of hemopressin and the potential for drug development based on hemopressin remain and are discussed in this review.  相似文献   

20.
Modulation of B cell responses by Toll-like receptors   总被引:1,自引:0,他引:1  
B lymphocytes are well known because of their key role in mediating humoral immune responses. Upon encounter with antigen and on cognate interaction with T cells, they differentiate into antibody-secreting plasma cells, which are critical for protection against a variety of pathogens. In addition to their antibody-production function, B cells are efficient antigen-presenting cells and express a variety of pathogen recognition receptors (PRRs). Engagement of these PRRs with their respective ligands results in cytokine and chemokine secretion and the upregulation of co-stimulatory molecules. These events constitute innate immune responses. Toll-like receptor (TLR) activation provides a third signal for B cell activation and is essential for optimal antigen-specific antibody responses. In some situations, TLR activation in B cells can result in autoimmunity. The purpose of this review is to provide some insights into the way that TLRs influence innate and adaptive B cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号