首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal titration calorimetry (ITC) has given a mass of data on the binding of small molecules to proteins and other biopolymers, with particular interest in drug binding to proteins chosen as therapeutic indicators. Interpretation of the enthalpy data usually follows an unsound protocol that uses thermodynamic relations in circumstances where they do not apply. Errors of interpretation include incomplete definitions of ligand binding and equilibrium constants and neglect of the non-ideality of the solutions under study, leading to unreliable estimates of standard free energies and entropies of binding. The mass of reported thermodynamic functions for ligand binding to proteins estimated from ITC enthalpies alone is consequently of uncertain thermodynamic significance and utility. ITC and related experiments to test the protocol assumptions are indicated. A thermodynamic procedure avoiding equilibrium constants or other reaction models and not requiring protein activities is given. The discussion draws attention to the fundamental but neglected relation between the thermodynamic activity and bioactivity of drugs and to the generally unknown thermodynamic status of ligand solutions, which for drugs relates directly to effective therapeutic dosimetry.  相似文献   

2.
Isothermal titration calorimetry (ITC) is one of the most robust label- and immobilization-free techniques used to measure protein – small molecule interactions in drug design for the simultaneous determination of the binding affinity (ΔG) and the enthalpy (ΔH), both of which are important parameters for structure-thermodynamics correlations. It is important to evaluate the precision of the method and of various ITC instrument models by performing a single well-characterized reaction. The binding between carbonic anhydrase II and acetazolamide was measured by four ITC instruments – PEAQ-ITC, iTC200, VP-ITC, and MCS-ITC and the standard deviation of ΔG and ΔH was determined. Furthermore, the limit of an approach to reduce the protein concentration was studied for a high-affinity reaction (Kd = 0.3 nM), too tight to be measured by direct (non-displacement) ITC. Chemical validation of the enthalpy measurements is discussed.  相似文献   

3.
  1. Download : Download high-res image (87KB)
  2. Download : Download full-size image
  相似文献   

4.
Diadenosine polyphosphates (diadenosine 5',5'-P(1),P(n)-polyphosphate (Ap(n)A)) are 5'-5'-phosphate-bridged dinucleosides that have been proposed to act as signaling molecules in a variety of biological systems. Isothermal titration calorimetry was used to measure the affinities of a variety of metal cations for ATP, diadenosine 5',5'-P(1),P(3)-triphosphate (Ap(3)A), diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A), and diadenosine 5',5'-P(1),P(5)-pentaphosphate (Ap(5)A). The binding of Mg(2+), Ca(2+), and Mn(2+) to ATP is shown to take place with the beta,gamma-phosphates (primary site) and be endothermic in character. The binding of Ni(2+), Cd(2+), and Zn(2+) to ATP is found to take place at both the primary site and at a secondary site identified as N-7 of the adenine ring. Binding to this second site is exothermic in character. Generally, the binding of metal cations to diadenosine polyphosphates involves a similar primary site to ATP. No exothermic binding events are identified. Critically, the binding of Zn(2+) to diadenosine polyphosphates proves to be exceptional. This appears to involve a very high affinity association involving the N-7 atoms of both adenine rings in each Ap(n)A, as well as the more usual endothermic association with the phosphate chain. The high affinity association is also endothermic in character. A combination of NMR and CD evidence is provided in support of the calorimetry data demonstrating chemical shift changes and base stacking disruptions entirely consistent with N-7 bridging interactions. N-7 bridging interactions are entirely reversible, as demonstrated by EDTA titration. Considering the effects of Zn(2+) on a wide variety of dinucleoside polyphosphate-metabolizing enzymes, we examine the possibility of Zn(2+) acting as an atomic switch to control the biological function of the diadenosine polyphosphates.  相似文献   

5.
A rigorous method for the least-squares nonlinear regression analysis of displacement isothermal titration calorimetric data is presented. The method can fit the binding isotherm of a ligand which is competitively inhibited in its binding by another bound ligand to a molecule with n identical and independent binding sites. There are no other assumptions for the method and no approximations. Analysis of previously published data of the strong binding of acarbose to glucoamylase is presented as an example. The regression equations have been programmed for the Origin software supplied with the widely used titration calorimeters from Microcal, Inc., and an Origin Function Definition File with instructions is freely available from the author upon e-mail request.  相似文献   

6.
7.
Isothermal titration calorimetry (ITC) is a technique that is capable of quantifying the stoichiometry, equilibrium constants and thermodynamics of molecular binding events. Thus, important information about the interaction of metal ions with biological macromolecules can be obtained with ITC measurements. This review highlights many of the recent studies of metal ions binding to proteins that have used ITC to quantify the thermodynamics of metal-protein interactions.  相似文献   

8.
Escherichia coli multidrug resistance protein E (EmrE) is an integral membrane protein spanning the inner membrane of Escherichia coli that is responsible for this organism's resistance to a variety of lipophilic cations such as quaternary ammonium compounds (QACs) and interchelating dyes. EmrE is a 12-kDa protein of four transmembrane helices considered to be functional as a multimer. It is an efflux transporter that can bind and transport cytoplasmic QACs into the periplasm using the energy of the proton gradient across the inner membrane. Isothermal titration calorimetry provides information about the stoichiometry and thermodynamic properties of protein-ligand interactions, and can be used to monitor the binding of QACs to EmrE in different membrane mimetic environments. In this study the ligand binding to EmrE solubilized in dodecyl maltoside, sodium dodecyl sulfate and reconstituted into small unilamellar vesicles is examined by isothermal titration calorimetry. The binding stoichiometry of EmrE to drug was found to be 1:1, demonstrating that oligomerization of EmrE is not necessary for binding to drug. The binding of EmrE to drug was observed with the dissociation constant (K(D)) in the micromolar range for each of the drugs in any of the membrane mimetic environments. Thermodynamic properties demonstrated this interaction to be enthalpy-driven with similar enthalpies of 8-12 kcal/mol for each of the drugs in any of the membrane mimetics.  相似文献   

9.
Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a catalytically incompetent enzyme that allows substrate binding to both the AS and SBS. In the second enzyme, binding to the SBS was impaired by site-directed mutagenesis, whereas in the third enzyme, the AS was blocked using a covalent inhibitor. Both techniques were able to show that AS and SBS have a similar binding affinity.  相似文献   

10.
Abraham T  Lewis RN  Hodges RS  McElhaney RN 《Biochemistry》2005,44(33):11279-11285
The binding of the amphiphilic, positively charged, cyclic beta-sheet antimicrobial decapeptide gramicidin S (GS) to various lipid bilayer model membrane systems was studied by isothermal titration calorimetry. Large unilamellar vesicles composed of the zwitterionic phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine or the anionic phospholipid 1-palmitoyl-2-oleoylphosphatidylglycerol, or a binary mixture of the two, with or without cholesterol, were used to mimic the lipid compositions of the outer monolayers of the lipid bilayers of mammalian and bacterial membranes, respectively. Dynamic light scattering results suggest the absence of major alterations in vesicle size or appreciable vesicle fusion upon the binding of GS to the lipid vesicles under our experimental conditions. The binding isotherms can be reasonably well described by a one-site binding model. GS is found to bind with higher affinity to anionic phosphatidylglycerol than to zwitterionic phosphatidylcholine vesicles, indicating that electrostatic interactions in the former system facilitate peptide binding. However, the presence of cholesterol reduced binding only slightly, indicating that the binding of GS is not highly sensitive to the order of the phospholipid bilayer system. Similarly, the measured positive endothermic binding enthalpy (DeltaH) varies only modestly (2.6 to 4.4 kcal/mol), and the negative free energy of binding (DeltaG) also remains relatively constant (-10.9 to -12.1 kcal/mol). The relatively large but invariant positive binding entropy, reflected in relatively large TDeltaS values (13.4 to 16.4 kcal/mol), indicates that GS binding to phospholipid bilayers is primarily entropy driven. Finally, the relative binding affinities of GS for various phospholipid vesicles correlate relatively well with the relative lipid specificity for GS interactions with bacterial and erythrocyte membranes observed in vivo.  相似文献   

11.
12.
The binding of the positively charged antimicrobial peptide cyclo[VKLdKVdYPLKVKLdYP] (GS14dK4) to various lipid bilayer model membranes was investigated using isothermal titration calorimetry. GS14dK4 is a diastereomeric lysine ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S which exhibits enhanced antimicrobial and markedly reduced hemolytic activities compared with GS itself. Large unilamellar vesicles composed of various zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphorylcholine [POPC]) and anionic phospholipids {1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(glycerol)] [POPG] and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phosphoserine] [POPS]}, with or without cholesterol, were used as model membrane systems. Dynamic light scattering results indicate the absence of any peptide-induced major alteration in vesicle size or vesicle fusion under our experimental conditions. The binding of GS14dK4 is significantly influenced by the surface charge density of the phospholipid bilayer and by the presence of cholesterol. Specifically, a significant reduction in the degree of binding occurs when three-fourths of the anionic lipid molecules are replaced with zwitterionic POPC molecules. No measurable binding occurs to cholesterol-containing zwitterionic vesicles, and a dramatic drop in binding is observed in the cholesterol-containing anionic POPG and POPS membranes, indicating that the presence of cholesterol markedly reduces the affinity of this peptide for phospholipid bilayers. The binding isotherms can be described quantitatively by a one-site binding model. The measured endothermic binding enthalpy (DeltaH) varies dramatically (+6.3 to +26.5 kcal/mol) and appears to be inversely related to the order of the phospholipid bilayer system. However, the negative free energy (DeltaG) of binding remains relatively constant (-8.5 to -11.5 kcal/mol) for all lipid membranes examined. The relatively small variation of negative free energy of peptide binding together with a pronounced variation of positive enthalpy produces an equally strong variation of TDeltaS (+16.2 to +35.0 kcal/mol), indicating that GS14dK4 binding to phospholipids bilayers is primarily entropy driven.  相似文献   

13.
For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (K(A)>10(8)M(-1); K(D)<10(-8)M), a new challenge arises: to measure these values accurately. Isothermal titration calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate.  相似文献   

14.
The features of monovalent and bivalent binding of receptors (or antibodies) with a polyvalent ligand (or with an antigen) are considered. It is shown that the rigid connection of the binding sites of the receptor brings to high increase of binding affinity for the corresponding ligand, but only in case if its epitopes are fully complementary to both sites of the receptor binding. If not, then there is no advantage of the binding of bivalent receptor before univalent binding. If the binding sites of the receptor are connected by a flexible linker, then regardless of location of epitopes of the corresponding ligand there is the successful fastening of receptor and ligand. Exactly the connection by a flexible linker is used by Nature in most cases at constructing of polyvalent receptors.  相似文献   

15.
The environmental fate and, in particular, biodegradation rates of hydrophobic organic compounds (HOC) are of high interest due to the ubiquity, persistence, and potential health effects of these compounds. HOC tend to interact with bioreactor materials and sampling devices and are frequently volatile, so that conventionally derived degradation parameters are often biased. We report on the development and validation of a novel calorimetric approach that serves to gain real time information on the kinetics and the physiology of HOC bioconversion in aqueous systems while overcoming weaknesses of conventional biodegradation experiments. Soil bacteria Mycobacterium frederiksbergense LB501T, Rhodococcus erythropolis K2-3 and Pseudomonas putida G7 were exposed to pulsed titrations of dissolved anthracene, 4-(2,4-dichlorophenoxy)butyric acid or naphthalene, respectively, and the thermal responses were monitored. The combinations of strains and pollutants were selected as examples for complete and partial biodegradation and complete degradation with storage product formation, respectively. Heat production signals were interpreted thermodynamically and in terms of Michaelis-Menten kinetics. The half-saturation constant kD and the degradation rate rDMax were derived. Comparison with conventional methods shows the suitability to extract kinetic degradation parameters of organic trace pollutants from simple ITC experiments, while thermodynamic interpretation provided further information about the metabolic fate of HOC compounds.  相似文献   

16.
Karsten WE  Cook PF 《Biochemistry》2006,45(29):9000-9006
An isothermal titration calorimetric study of the binding of substrates and inhibitors to different complexes of tartrate dehydrogenase (TDH) from Pseudomonas putida was carried out. TDH catalyzes the nicotinamide adenine dinucleotide (NAD)-dependent oxidative decarboxylation of d-malate and has an absolute requirement for both a divalent and monovalent metal ion for activity. The ligands Mn(2+), meso-tartrate, oxalate, and reduced nicotinamide adenine dinucleotide (NADH) bound to all TDH complexes with a stoichiometry of 1 per enzyme dimer. The exception is NAD, which binds to E/K(+), E/K(+)/Mn(2+), and E/K(+)/Mg(2+) complexes with a stoichiometry of two per enzyme dimer. The binding studies suggest a half-of-the-sites mechanism for TDH. No significant heat changes were observed for d-malate in the presence of the E/K(+)/Mn(2+) complex, suggesting that it did not bind. In contrast, meso-tartrate does bind to E/K(+)/Mn(2+) but gives no significant heat change in the presence of E/Mn(2+), suggesting that K(+) is required for meso-tartrate binding. meso-Tartrate also binds with a large DeltaC(p) value and likely binds via a different binding mode than d-malate, which binds only in the presence of NAD. In contrast to all of the other ligands tested, the binding of Mn(2+) is entropically driven, likely the result of the entropically favored disruption of ordered water molecules coordinated to Mn(2+) in solution that are lost upon binding to the enzyme. Oxalate, a competitive inhibitor of malate, binds with the greatest affinity to E/K(+)/Mn(2+)/NADH, and its binding is associated with the uptake of a proton. Overall, with d-malate as the substrate, data are consistent with a random addition of K(+), Mn(2+), and NAD followed by the ordered addition of d-malate; there is significant synergism in the binding of NAD and K(+). Although the binding of meso-tartrate also requires enzyme-bound K(+) and Mn(2+), the binding of meso-tartrate and NAD is random.  相似文献   

17.
A theoretical development in the evaluation of proton linkage in protein binding reactions by isothermal titration calorimetry (ITC) is presented. For a system in which binding is linked to protonation of an ionizable group on a protein, we show that by performing experiments as a function of pH in buffers with varying ionization enthalpy, one can determine the pK(a)'s of the group responsible for the proton linkage in the free and the liganded states, the protonation enthalpy for this group in these states, as well as the intrinsic energetics for ligand binding (delta H(o), delta S(o), and delta C(p)). Determination of intrinsic energetics in this fashion allows for comparison with energetics calculated empirically from structural information. It is shown that in addition to variation of the ligand binding constant with pH, the observed binding enthalpy and heat capacity change can undergo extreme deviations from their intrinsic values, depending upon pH and buffer conditions.  相似文献   

18.
The activity of many biomolecules and drugs crucially depends on whether they bind to biological membranes and whether they translocate to the opposite lipid leaflet and trans aqueous compartment. A general strategy to measure membrane binding and permeation is the uptake and release assay, which compares two apparent equilibrium situations established either by the addition or by the extraction of the solute of interest. Only solutes that permeate the membrane sufficiently fast do not show any dependence on the history of sample preparation. This strategy can be pursued for virtually all membrane-binding solutes, using any method suitable for detecting binding. Here, we present in detail one example that is particularly well developed, namely the nonspecific membrane partitioning and flip-flop of small, nonionic solutes as characterized by isothermal titration calorimetry. A complete set of experiments, including all sample preparation procedures, can typically be accomplished within 2 days. Analogous protocols for studying charged solutes, virtually water-insoluble, hydrophobic compounds or specific ligands are also considered.  相似文献   

19.
Bile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively. Structure analysis and functional studies reveal key residues responsible for species-specific ligand responses of DAF-12. Furthermore, DA binds to DAF-12 mechanistically and is structurally similar to bile acids binding to the mammalian bile acid receptor farnesoid X receptor. Activation of DAF-12 by cholestenoic acid and the cholestenoic acid complex structure suggest that bile acid-like signaling pathways have been conserved in nematodes and mammals. Together, these results reveal the molecular mechanism for the interplay between parasite and host, provide a structural framework for DAF-12 as a promising target in treating nematode parasitism, and provide insight into the evolution of gut parasite hormone-signaling pathways.  相似文献   

20.
1. The dependences of the concentrations of the non-ligated, uni-ligated and bi-ligated forms of a molecule that binds two molecules of ligand are expressed as functions of the logarithm of free ligand concentration by means of hyperbolic functions. Expressions are also given for the saturation both of an individual site and of the molecule as a whole. This form of expression allows derivation of the following points. 2. The sharpness of bell-shaped curves of concentration of the uni-ligated form is analysed in terms of the heights of their points of inflexion; these can rise to 1/ radical2 of the curve. 3. A single group can exhibit a doubly sigmoid saturation curve if this group and another have comparable affinities for a ligand, and if ligand binding at one of them diminishes the affinity at the other. If the molecular pK values pK(1) and pK(2) for the first and second molecules of ligand are called pK*+/-logm, so that K*(2)=K(1)K(2) and m(2)=K(1)/K(2), then the doubly sigmoid curve can be represented by the sum of two independent one-site saturation curves, in general of unequal height, of pK values pK*+/-log(1/2)[m+ radical(m(2)-4)]. The error in such representation is small either if the mutual interaction between the groups (i.e. m) is large, or if the groups have very similar affinities for the ligand. 4. The sum of two one-site saturation curves, again of pK values of pK*+/-log(1/2)[m+ radical(m(2)-4)] but of equal heights, gives a precise value for the total saturation, provided that the binding of one molecule does not promote the binding of a second, i.e. providing that m>/=2. Hence determinations of saturation cannot distinguish interacting and possibly identical sites from independent and different ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号