首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human neutrophil alpha-defensin 4 inhibits HIV-1 infection in vitro   总被引:3,自引:0,他引:3  
Human neutrophil alpha-defensin 4 (HNP4) is more effective than HNP1-3 in protecting human peripheral blood mononuclear cells from infection by both X4 and R5 HIV-1 strains. HNP4 binds to both CD4 and gp120 approximately two orders of magnitude weaker than does HNP1, and is less effectively sequestered by glycosylated serum proteins than HNP1. These results suggest that the HIV-1 inhibition by HNP4 stems at least partially from a unique and lectin-independent property of HNP4 with CD4 and/or gp120. Our finding identifies an anti-HIV-1 property of HNP4 and may have implications in the development of new antiviral agents for AIDS therapy.  相似文献   

2.
The role of serine proteinases and oxidants in the activation of gelatinase released from human neutrophils was investigated. Gelatinase was measured by its ability to degrade both gelatin and native glomerular basement-membrane type IV collagen. When fMet-Leu-Phe or phorbol 12-myristate 13-acetate was used to stimulate the neutrophils, no gelatinase activity was measured in the absence of a mercurial activator, indicating that the enzyme was released entirely in latent form. However, when fMet-Leu-Phe-stimulated cells were treated with cytochalasin B, 50-70% of the maximal gelatinase activity was released. Activation was blocked by the serine-proteinase inhibitor phenylmethanesulphonyl fluoride and a specific inhibitor of neutrophil elastase, but was not affected by an inhibitor of cathepsin G. Addition of catalase or azide to prevent oxidative reactions did not affect activation of gelatinase under any conditions of stimulation, indicating that oxidants were not involved in activation. Our results imply that oxidative activation of gelatinase does not occur readily. However, neutrophil serine proteinases, particularly elastase, provide an alternative and apparently more efficient mechanism of activation.  相似文献   

3.
4.
Elafin and its precursor trappin-2 (also called pre-elafin) are potent protein inhibitors of neutrophil serine proteases such as leukocyte elastase and proteinase 3. Trappin-2 has unique conserved sequence motifs rich in Gln and Lys residues. These motifs are substrates for transglutaminases that may enable trappin-2 to be cross-linked to extracellular matrix proteins, thus anchoring the inhibitor at its site of action. We have used Western blotting and ELISA-based assays to demonstrate that both elafin and trappin-2 can be conjugated to various extracellular matrix proteins in vitro by a type 2 transglutaminase. Cross-linked elafin and trappin-2 still inhibited their target proteases. Surface plasmon resonance studies allowed the determination of the kinetic constants governing the interaction of fibronectin-bound elafin and trappin-2 with neutrophil elastase and proteinase 3. Both inhibitors were potent inhibitors when cross-linked to fibronectin by transglutamination, with equilibrium dissociation constants K(i) for their interaction with target proteases of 0.3 nM (elastase-elafin), 20 nM (proteinase 3-elafin), 0.3 nM (elastase-trappin-2), and 12 nM (proteinase 3-trappin-2). The conjugated inhibitors reacted more slowly with their target enzymes than did the soluble inhibitors, perhaps due to their immobilization, with association rate constants of 2-7 x 10(5) M(-)(1) s(-)(1) for elastase and 1-4 x 10(4) M(-)(1) s(-)(1) for proteinase 3. We believe this is the first demonstration that transglutaminase-mediated cross-linking of serine protease inhibitors to proteins preserves their inhibitory capacities.  相似文献   

5.
Human marrow cells were irradiated with 2450-MHz CW microwaves in a fluid-filled waveguide irradiation system. Cell exposure was conducted by placing a marrow cell suspension in 20-μl glass microcapillary tubes that were positioned in the exposure chamber, and irradiated at power densities from 31 to 1,000 mW/cm2 (with corresponding specific absorption rates of 62 to 2,000 mW/g) for 15 minutes. The temperature of the sample was maintained at a fixed point. Sham-irradiated (SI) and microwave-irradiated (MWI) cells were cultured in a methylcellulose culture system for neutrophil colony proliferation. There was no reduction in neutrophil colony number on days 6–7 or 12–14 in cells exposed at 31 or 62 mW/cm2, but as the power density was increased to 1,000 mW/cm2, there was a reduction in colony number of MWI cells compared with SI cells. The microwave interaction with the human neutrophil colony-forming cells was apparently not related to temperature rise, or to the state of cell cycle, and was irreversible.  相似文献   

6.
Derivatives of benzamidine inhibit competitively the activity of the serine proteinases trypsin, plasmin, thrombin, and of the clotting factor Xa. The inhibitor activities (Ki-values) of various benzamidine derivatives against the several enzymes were compared. Besides parallels, deviations in the corresponding structure-activity relationships were found. From these results it is concluded that the similar enzymes exhibit certain differences in the structure of the primary and secondary binding sites.  相似文献   

7.
This study aimed to investigate the degradation of the natural substrates tropoelastin and elastin by the neutrophil-derived serine proteases human leukocyte elastase (HLE), proteinase 3 (PR3) and cathepsin G (CG). Focus was placed on determining their cleavage site specificities using mass spectrometric techniques. Moreover, the release of bioactive peptides from elastin by the three proteases was studied. Tropoelastin was comprehensively degraded by all three proteases, whereas less cleavage occurred in mature cross-linked elastin. An analysis of the cleavage site specificities of the three proteases in tropoelastin and elastin revealed that HLE and PR3 similarly tolerate hydrophobic and/or aliphatic amino acids such as Ala, Gly and Val at P1, which are also preferred by CG. In addition, CG prefers the bulky hydrophobic amino acid Leu and accepts the bulky aromatic amino acids Phe and Tyr. CG shows a strong preference for the charged amino acid Lys at P1 in tropoelastin, whereas Lys was not identified at P1 in CG digests of elastin due to extensive cross-linking at Lys residues in mature elastin. All three serine proteases showed a clear preference for Pro at P2 and P4′. With respect to the liberation of potentially bioactive peptides from elastin, the study revealed that all three serine proteases have a similar ability to release bioactive sequences, with CG producing the highest number of these peptides. In bioactivity studies, potentially bioactive peptides that have not been investigated on their bioactivity to date, were tested. Three new bioactive GxxPG motifs were identified; GVYPG, GFGPG and GVLPG.  相似文献   

8.
G Salvesen  J J Enghild 《Biochemistry》1990,29(22):5304-5308
The majority of proteinases exist as zymogens whose activation usually results from a single proteolytic event. Two notable exceptions to this generalization are the serine proteinases neutrophil elastase (HNE) and cathepsin G (cat G), proteolytic enzymes of human neutrophils that are apparently fully active in their storage granules. On the basis of amino acid sequences inferred from the gene and cDNAs encoding these enzymes, it is likely that both are synthesized as precursors containing unusual C-terminal and N-terminal peptide extensions absent from the mature proteins. We have used biosynthetic radiolabeling and radiosequencing techniques to identify the kinetics of activation of both proteinases in the promonocyte-like cell line U937. We find that both N- and C-terminal extensions are removed about 90 min after the onset of synthesis, resulting in the activation of the proteinases. HNE and cat G are, therefore, transiently present as zymogens, presumably to protect the biosynthetic machinery of the cell from adventitious proteolysis. Activation results from cleavage following a glutamic acid residue to give an activation specificity opposite to those of almost all other serine proteinase zymogens, but shared, possibly, by the "granzyme" group of related serine proteinases present in the killer granules of cytotoxic T-lymphocytes and rat mast cell proteinase II.  相似文献   

9.
Defensins represent an evolutionarily conserved group of small peptides with potent antibacterial activities. We report here that extracellular proteinases secreted by the human pathogens Pseudomonas aeruginosa, Enterococcus faecalis and Streptococcus pyogenes release dermatan sulphate by degrading dermatan sulphate-containing proteoglycans, such as decorin. Dermatan sulphate was found to bind to neutrophil-derived alpha-defensin, and this binding completely neutralized its bactericidal activity. During infection, proteoglycan degradation and release of dermatan sulphate may therefore represent a previously unknown virulence mechanism, which could serve as a target for novel antibacterial strategies.  相似文献   

10.
The mechanisms of activation of the precursor of human matrix metalloproteinase 3 (proMMP-3/prostromelysin) by proteinases and (4-aminophenyl)mercuric acetate (APMA) were investigated by kinetic and sequence analyses. Incubation of proMMP-3 with neutrophil elastase, plasma kallikrein, plasmin, or chymotrypsin at 37 degrees C resulted in the formation of MMP-3 of Mr = 45,000 by cleaving of the His82-Phe83 bond. Since this bond is unlikely to be cleaved by these proteinases it was postulated that an initial attack of an activator proteinase on proMMP-3 creates an intermediate form, which is then processed to a more stable form of Mr = 45,000. To test this hypothesis proMMP-3 was incubated with these serine proteinases under conditions that minimize the action of MMP-3. This led to the accumulation of major intermediates of Mr = 53,000 and two minor forms of Mr = 49,000 and 47,000. The 53,000 Mr intermediate generated by human neutrophil elastase resulted from cleavage of the Val35-Arg36 whereas plasma kallikrein cleaved the Arg36-Arg37 and Lys38-Asp39 bonds and chymotrypsin the Phe34-Val35 bond, all of which are located near the middle of the propeptide. Conversion of these intermediates to the fully active 45,000 Mr form of MMP-3 resulted from a bimolecular reaction of the intermediates. A similar short-lived intermediate of Mr = 46,000 generated by APMA was a result of the intramolecular cleavage of the Glu68-Val69 bond, and it was then converted to a stable MMP-3 of Mr = 45,000 by a intermolecular reaction of MMP-3. However, MMP-3 failed to activate proMMP-3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Leishmania major is a protozoan parasite that causes skin ulcerations in cutaneous leishmaniasis. In the mammalian host, the parasite resides in professional phagocytes and has evolved to avoid killing by macrophages. We identified L. major genes encoding inhibitors of serine peptidases (ISPs), which are orthologs of bacterial ecotins, and found that ISP2 inhibits trypsin-fold S1A family peptidases. In this study, we show that L. major mutants deficient in ISP2 and ISP3 (Δisp2/3) trigger higher phagocytosis by macrophages through a combined action of the complement type 3 receptor, TLR4, and unregulated activity of neutrophil elastase (NE), leading to parasite killing. Whereas all three components are required to mediate enhanced parasite uptake, only TLR4 and NE are necessary to promote parasite killing postinfection. We found that the production of superoxide by macrophages in the absence of ISP2 is the main mechanism controlling the intracellular infection. Furthermore, we show that NE modulates macrophage infection in vivo, and that the lack of ISP leads to reduced parasite burdens at later stages of the infection. Our findings support the hypothesis that ISPs function to prevent the activation of TLR4 by NE during the Leishmania-macrophage interaction to promote parasite survival and growth.  相似文献   

12.
Serine:pyruvate aminotransferase [EC 2.6.1.51] of rat liver, an enzyme induced by glucagon in mitochondria, was synthesized in cell-free protein synthesizing systems derived from nuclease-treated rabbit reticulocyte lysate and wheat germ extract as a putative precursor which was approximately 2,000 daltons larger than the subunit of mature enzyme. The hepatic level of translatable messenger RNA coding for the putative precursor was approximately 40 times higher in rats received a glucagon administration 3.5 h before sacrifice than in control animals.  相似文献   

13.
14.
The effects of the Ca2+-activated cysteine proteinase, the rat trypsin-like serine proteinase and bovine trypsin on myofibrillar proteins from rabbit skeletal muscle are compared. 2. Myofibrils that had been treated at neutral pH with the Ca2+-dependent proteinase and with the rat enzyme were (a) analyzed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and (b) examined in the electron microscope. Treatment with each proteinase resulted in the loss of the Z-discs, but the rat enzyme caused much more extensive disruption of the ultrastructure and degraded more of the myofibrillar proteins. 3. Purified F-actin was almost totally resistant to the proteinases, whereas G-actin was degraded by the rat trypsin-like proteinase at a rate approx. 15 times faster than was obtained with bovine trypsin. 4. Similar results were obtained with alpha-actinin, whereas tropomyosin was degraded more readily by bovine trypsin than by the rat trypsin-like proteinase. 5. The implications of these findings for the non-lysosomal breakdown of myofibrillar proteins in vivo are considered.  相似文献   

15.
The PDE4 catalytic machinery comprises, in part, two divalent cations in a binuclear motif. Here we report that PDE4A4 expressed in Sf9 cells exhibits a biphasic Mg(2+) dose-response (EC(50) of 0.15 and >10 mM) in catalyzing cAMP hydrolysis. In vitro phosphorylation of PDE4A4 by the PKA-catalytic subunit increases the enzyme's sensitivity to Mg(2+), leading to 4-fold increased cAMP hydrolysis without affecting its K(m). The phosphorylation also increases the potencies of (R)- and (S)-rolipram without affecting CDP-840 and SB-207499. The results support that modulating the cofactor binding affinity of PDE4 represents a mechanism for regulating its activity.  相似文献   

16.
1. Hydrolysis of the myosins from smooth and from skeletal muscle by a rat trypsin-like serine proteinase and by bovine trypsin at pH 7 is compared. 2. Proteolysis of the heavy chains of both myosins by the rat enzyme proceeds at rates approx. 20 times faster than those obtained with bovine trypsin. Whereas cleavage of skeletal-muscle myosin heavy chain by both enzymes results in the generation of conventional products i.e. heavy meromyosin and light meromyosin, the heavy chain of smooth-muscle myosin is degraded into a fragment of mol. wt. 150000. This is dissimilar from heavy meromyosin and cannot be converted into heavy meromyosin. It is shown that proteolysis of the heavy chain takes place in the head region. 3. The 'regulatory' light chain (20kDa) of smooth-muscle myosin is degraded very rapidly by the rat proteinase. 4. The ability of smooth-muscle myosin to have its ATPase activity activated by actin in the presence of a crude tropomyosin fraction on introduction of Ca2+ is diminished progressively during exposure to the rat proteinase. The rate of loss of the Ca2+-activated actomyosin ATPase activity is very similar to the rate observed for proteolysis of the heavy chain and 3-4 times slower than the rate of removal of the so-called 'regulatory' light chain. 5. The significance of these findings in terms of the functional organization of the smooth muscle myosin molecule is discussed. 6. Since the degraded myosin obtained after exposure to very small amounts of the rat proteinase is no longer able to respond to Ca2+, i.e. the functional activity of the molecule has been removed, the implications of a similar type of proteolysis operating in vivo are considered for myofibrillar protein turnover in general, but particularly with regard to the initiation of myosin degradation, which is known to take place outside the lysosome (i.e. at neutral pH).  相似文献   

17.
The degradation of human lung elastin by neutrophil proteinases   总被引:13,自引:0,他引:13  
Human lung elastin has been isolated by both a degradative and nondegradative procedure and the products obtained found to have amino acid compositions comparable to published results. These elastin preparations, when utilized as substrates for various mammalian proteinases, were solubilized by porcine elastase at a rate six times faster than human leukocyte elastase. Leukocyte cathepsin G also solubilized lung elastin but only at 12% of the rate of the leukocyte elastase. In all cases the elastin prepared by nondegradative techniques proved to be the best substrate in these studies. The differences in the rate of digestion of elastin of the two elastolytic proteinases was readily attributed to the specificity differences of each enzyme as judged by carboxyterminal analysis of solubilized elastin peptides. The plasma proteinase inhibitors, alpha-1-proteinase inhibitor and alpha-2-macroglobulin abolished the elastolytic activity of both leukocyte enzymes, while alpha-1-antichymotrypsin specifically inactivated cathespsin G. Two synthetic inhibitors, Me-O-Suc-Ala-Ala-Pro-Val-CH2Cl (for elastase and Z-Gly-Leu-Phe-CH2Cl (for cathepsin G) were equally effective in abolishing the elastolytic activity of the two neutrophil enzymes. However, inhibition of leukocyte elastase by alpha-1-proteinase inhibitor was significantly suppressed if the enzyme was preincubated with elastin prior to addition of the inhibitor.  相似文献   

18.
During the last years the cases and death due to hemostatic violations exceed that of tumors. Enormous efforts have devoted to the prevention and treatment of some diseases such as arterial thrombosis. Antistasin, a 15 kDa anticoagulant protein isolated from salivary glands of the Mexican leech Haementeria officinalis, has been shown to be a potent inhibitor of Factor Xa in the blood coagulation cascade. Some short analogues which are hybrid structure between isoform 2 and 3 of antistasin and tripeptides inhibitors of serine proteinases were synthesized and reported in our previous work. Inhibitor constants, mechanism, and type of inhibition of some short analogues of antistasin are investigated. These analogs which show high anticoagulant activity in vitro in pure platelet human plasma.  相似文献   

19.
The formation of beta A4 amyloid in the brains of individuals with Alzheimer's disease requires the proteolytic cleavage of amyloid precursor protein. Several lines of evidence suggest that cathepsin D, the major lysosomal/endosomal aspartic protease, may be involved in this process. In this work, we used a sensitive in vitro method of detection to investigate the role of cathepsin D in the proteolytic processing of a 100-amino acid C-terminal fragment (C100) inclusive of beta A4 and cytoplasmic domain of APP. Digestion of C100 with cathepsin D resulted in cleavage at the amyloidogenic gamma-cleavage sites. This occurred preferentially at Thr43-Val44 and at Ala42-Thr43, generating full length beta A4 43 and beta A4 42 amyloid peptides, respectively. Cathepsin D was also found to cleave the substrate at the following nonamyloidogenic sites; Leu34-Met35, Thr48-Leu49 and Leu49-Val50. A high concentration of cathepsin D resulted in cleavage also occurring at Phe19-Phe20, Phe20-Ala21 and Phe93-Phe94 of the C100, suggesting that these sites are somewhat less sensitive to the action of cathepsin D. Digestion of C100 using different solublizing agents indicated that the cleavage of C100 by cathepsin D is greatly influenced by the structural integrity of the substrate. However, our results suggest that cathepsin D could generate the pathogenic beta A4 amyloid peptides from its precursor in vitro, which may indicate a role in the amyloidogenesis of Alzheimer's disease.  相似文献   

20.
Caspase activation and apoptosis can be initiated by the introduction of serine proteinases into the cytoplasm of a cell. Cytotoxic lymphocytes have evolved at least one serine proteinase with specific pro-apoptotic activity (granzyme B), as well as the mechanisms to deliver it into a target cell, and recent evidence suggests that other leucocyte granule proteinases may also have the capacity to kill if released into the interior of cells. For example, the monocyte/granulocyte proteinase cathepsin G can activate caspases in vitro, and will induce apoptosis if its entry into cells is mediated by a bacterial pore-forming protein. The potent pro-apoptotic activity of granzyme B and cathepsin G suggests that cells producing these (or other) proteinases would be at risk from self-induced death if the systems involved in packaging, degranulation or targeting fail and allow proteinases to enter the host cell cytoplasm. The purpose of the present review is to describe recent work on a group of intracellular serine proteinase inhibitors (serpins) which may function in leucocytes to prevent autolysis induced by the granule serine proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号