首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sinorhizobium meliloti genome sequence determination has provided the basis for different approaches of functional genomics for this symbiotic nitrogen-fixing alpha-proteobacterium. One of these approaches is gene disruption with subsequent analysis of mutant phenotypes. This method is efficient for single genes; however, it is laborious and time-consuming if it is used on a large scale. Here, we used a signature-tagged transposon mutagenesis method that allowed analysis of the survival and competitiveness of many mutants in a single experiment. A novel set of signature tags characterized by similar melting temperatures and G+C contents of the tag sequences was developed. The efficiencies of amplification of all tags were expected to be similar. Thus, no preselection of the tags was necessary to create a library of 412 signature-tagged transposons. To achieve high specificity of tag detection, each transposon was bar coded by two signature tags. In order to generate defined, nonredundant sets of signature-tagged S. meliloti mutants for subsequent experiments, 12,000 mutants were constructed, and insertion sites for more than 5,000 mutants were determined. One set consisting of 378 mutants was used in a validation experiment to identify mutants showing altered growth patterns.  相似文献   

2.
In this study, we focused on the effect of glutamine synthetase (GSI) activity in Mesorhizobium loti on the symbiosis between the host plant, Lotus japonicus, and the bacteroids. We used a signature-tagged mutant of M. loti (STM30) with a transposon inserted into the GSI (mll0343) gene. The L. japonicus plants inoculated with STM30 had significantly more nodules, and the occurrence of senesced nodules was much higher than in plants inoculated with the wild-type. The acetylene reduction activity (ARA) per nodule inoculated with STM30 was lowered compared to the control. Also, the concentration of chlorophyll, glutamine, and asparagine in leaves of STM30-infected plants was found to be reduced. Taken together, these data demonstrate that a GSI deficiency in M. loti differentially affects legume–rhizobia symbiosis by modifying nodule development and metabolic processes.  相似文献   

3.
Transposon mutagenesis using transposome complex is a powerful method for functional genomics analysis in diverse bacteria by creating a large number of random mutants to prepare a genome-saturating mutant library. However, strong host restriction barriers can lead to limitations with species- or strain-specific restriction-modification systems. The purpose of this study was to enhance the transposon mutagenesis efficiency of Salmonella Enteritidis to generate a larger number of random insertion mutants. Host-adapted Tn5 DNA was used to form a transposome complex, and this simple approach significantly and consistently improved the efficiency of transposon mutagenesis, resulting in a 46-fold increase in the efficiency as compared to non-adapted transposon DNA fragments. Random nature of Tn5 insertions was confirmed by high-throughput sequencing of the Tn5-junction sequences. The result based on S. Enteritidis in this study should find broad applications in preparing a comprehensive mutant library of other species using transposome complex.  相似文献   

4.
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar transposon. The gene essentiality calls were compared to: 1) previous genome-wide direct gene-essentiality assignments; and, 2) flux balance analysis (FBA) predictions from an existing genome-scale metabolic model of Shewanella oneidensis MR-1. A three-way comparison between FBA, TIFA, and the direct essentiality calls was made to validate the TIFA approach. The refinement in the interpretation of observed transposon insertions demonstrated that genes without insertions are not necessarily essential, and that genes that contain insertions are not always nonessential. The TIFA calls were in reasonable agreement with direct essentiality calls for S. oneidensis, but agreed more closely with E. coli essentiality calls for orthologs. The TIFA gene essentiality calls were in good agreement with the MR-1 FBA essentiality predictions, and the agreement between TIFA and FBA predictions was substantially better than between the FBA and the direct gene essentiality predictions.  相似文献   

5.
6.
Sinorhizobium meliloti genome sequence determination has provided the basis for different approaches of functional genomics for this symbiotic nitrogen-fixing alpha-proteobacterium. One of these approaches is gene disruption with subsequent analysis of mutant phenotypes. This method is efficient for single genes; however, it is laborious and time-consuming if it is used on a large scale. Here, we used a signature-tagged transposon mutagenesis method that allowed analysis of the survival and competitiveness of many mutants in a single experiment. A novel set of signature tags characterized by similar melting temperatures and G+C contents of the tag sequences was developed. The efficiencies of amplification of all tags were expected to be similar. Thus, no preselection of the tags was necessary to create a library of 412 signature-tagged transposons. To achieve high specificity of tag detection, each transposon was bar coded by two signature tags. In order to generate defined, nonredundant sets of signature-tagged S. meliloti mutants for subsequent experiments, 12,000 mutants were constructed, and insertion sites for more than 5,000 mutants were determined. One set consisting of 378 mutants was used in a validation experiment to identify mutants showing altered growth patterns.  相似文献   

7.
We have constructed plasmids to be used for in vitro signature-tagged mutagenesis (STM) of Campylobacter jejuni and used these to generate STM libraries in three different strains. Statistical analysis of the transposon insertion sites in the C. jejuni NCTC 11168 chromosome and the plasmids of strain 81-176 indicated that their distribution was not uniform. Visual inspection of the distribution suggested that deviation from uniformity was not due to preferential integration of the transposon into a limited number of hot spots but rather that there was a bias towards insertions around the origin. We screened pools of mutants from the STM libraries for their ability to colonize the ceca of 2-week-old chickens harboring a standardized gut flora. We observed high-frequency random loss of colonization proficient mutants. When cohoused birds were individually inoculated with different tagged mutants, random loss of colonization-proficient mutants was similarly observed, as was extensive bird-to-bird transmission of mutants. This indicates that the nature of campylobacter colonization in chickens is complex and dynamic, and we hypothesize that bottlenecks in the colonization process and between-bird transmission account for these observations.  相似文献   

8.
Moorman NJ  Lin CY  Speck SH 《Journal of virology》2004,78(19):10282-10290
Current methods for determining the role of a given gene product in the gammaherpesvirus 68 (gammaHV68) life cycle require generation of a specific mutation by either homologous recombination in mammalian cells or bacterial artificial chromosome-mediated mutagenesis in Escherichia coli. The mutant virus is then compared to wild-type virus, and the role of the gene in the viral life cycle is deduced from its phenotype. This process is both time-consuming and labor intensive. Here we present the use of random, transposon-mediated signature-tagged mutagenesis for the identification of candidate viral genes involved in virus replication. Pools of viral mutants, each containing a random insertion of a transposon, were generated with a transposon donor library in which each transposon contains a unique sequence identifier. These pools were transfected into mammalian cells, and the ability of each mutant to replicate was assessed by comparing the presence of virus in the output pool to that present in the input pool of viral genomes. With this approach we could rapidly screen up to 96 individual mutants simultaneously. The location of the transposon insertion was determined by sequencing individual clones with a common primer specific for the transposon end. Here we present the characterization of 53 distinct viral mutants that correspond to insertions in 29 open reading frames within the gammaHV68 genome. To confirm the results of the signature-tagged mutagenesis screen, we quantitated the ability of each mutant to replicate compared to wild-type gammaHV68. From these analyses we identified 16 gammaHV68 open reading frames that, when disrupted by transposon insertions, score as essential for virus replication, and six other open reading frames whose disruption led to significant attenuation of virus replication. In addition, transposon insertion in five other gammaHV68 open reading frames did not affect virus replication. Notably, all but one of the candidate essential replication genes identified in this screen have been shown to be essential for the replication of at least one other herpesvirus.  相似文献   

9.
Mesorhizobium loti is a Gram negative bacterium that induces N2-fixing root nodules on the model legume Lotus japonicus. Proteomic analysis in M. loti indicated that 3-phosphoglycerate dehydrogenase (EC. 1.1.1.95, PHGDH) protein content was 2.2 times higher in bacteroids than in cultured bacteria. A M. loti mutant (STM5) with a transposon insertion in the PHGDH gene, mll3875, showed an absolute dependence on serine or glycine in minimal medium for growth. When L. japonicus plants were infected with STM5, the roots formed nodules in numbers comparable to those formed by wild type M. loti; however, the nodules showed very low acetylene reduction activity, and significant starch granule accumulation was observed in the uninfected cells. In such nodules, vast necrosis occurred in the central tissue of the nodules, although bacteroids were detected in the infected cell of the nodules. These data indicate that serine or glycine biosynthesis by PHGDH is important for maintaining symbiosis and nitrogen fixation in L. japonicus nodules.  相似文献   

10.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

11.
Group B streptococcal (GBS) infections are the most common cause of bacterial sepsis in the immediate newborn period. Apart from the capsule, the factors required for survival of GBS in the host are not well defined. In this study, signature-tagged transposon mutagenesis (STM) was used to identify genes required for growth and survival of GBS in a neonatal rat sepsis infection model. Approximately 1600 transposon mutants were screened in pools of 80 mutants, and approximately 120 mutants defective for survival in the animal host were identified. We successfully cloned and sequenced DNA flanking the transposon insertions from 92 of the mutants. Fifty per cent of the mutants had transposon insertions in genes with homologues in the public databases, whereas the remaining 50% had transposon insertions in genes with unknown function. A significant proportion of the avirulent mutants had transposon insertions in genes encoding transport-associated or regulatory proteins or in genes involved in cell surface metabolism, emphasizing the significance of these functions for in vivo survival of GBS. Overall, STM analysis revealed GBS genomic loci that encode a wide variety of functional gene classes, underscoring the diversity of bacterial processes required for the infection process. Currently, the function of the genes identified during the screening can only be inferred by homology to previously described genes. However, a number of the genes identified in this study have been shown to correlate with virulence in other pathogens. A virulence of a subset of mutants identified during the screening was confirmed by performing competitive index assays and lethal dose assays. This represents the first report of a genome-wide scan for virulence factors in GBS. The identified genes will further our understanding of the pathogenesis of GBS infections and may represent targets for intervention or lead to the development of novel therapies.  相似文献   

12.
Transformation frequencies of a mariner-based transposon system in Rickettsia rickettsii were determined using a plaque assay system for enumeration and isolation of mutants. Sequence analysis of insertion sites in both R. rickettsii and R. prowazekii indicated that insertions were random. Transposon mutagenesis provides a useful tool for rickettsial research.  相似文献   

13.
The pathogenesis of cholera begins with colonization of the host intestine by Vibrio cholerae . The toxin co-regulated pilus (TCP), a fimbrial structure produced by V . cholerae , is absolutely required for colonization (i.e. the persistence, survival and growth of V . cholerae in the upper intestinal milieu), but many other aspects of the colonization process are not well understood. In this study, we use signature-tagged transposon mutagenesis (STM) to conduct a screen for random insertion mutations that affect colonization in the suckling mouse model for cholera. Of approximately 1100 mutants screened, five mutants (approximately 0.5%) with transposon insertions in TCP biogenesis genes were isolated, validating the use of STM to identify attenuated mutants. Insertions in lipopolysaccharide, biotin and purine biosynthetic genes were also found to cause colonization defects. Similar results were observed for mutations in homologues of pta and ptfA , two genes involved in phosphate transfer. Finally, our screen identified several novel genes, disruption of which also caused colonization defects in the mouse model. These results demonstrate that STM is a powerful method for isolating colonization-defective mutants of V . cholerae .  相似文献   

14.
The nitrogen‐fixing symbiosis of legumes and Rhizobium bacteria is established by complex interactions between the two symbiotic partners. Legume Fix mutants form apparently normal nodules with endosymbiotic rhizobia but fail to induce rhizobial nitrogen fixation. These mutants are useful for identifying the legume genes involved in the interactions essential for symbiotic nitrogen fixation. We describe here a Fix mutant of Lotus japonicus, apn1, which showed a very specific symbiotic phenotype. It formed ineffective nodules when inoculated with the Mesorhizobium loti strain TONO. In these nodules, infected cells disintegrated and successively became necrotic, indicating premature senescence typical of Fix mutants. However, it formed effective nodules when inoculated with the M. loti strain MAFF303099. Among nine different M. loti strains tested, four formed ineffective nodules and five formed effective nodules on apn1 roots. The identified causal gene, ASPARTIC PEPTIDASE NODULE‐INDUCED 1 (LjAPN1), encodes a nepenthesin‐type aspartic peptidase. The well characterized Arabidopsis aspartic peptidase CDR1 could complement the strain‐specific Fix phenotype of apn1. LjAPN1 is a typical late nodulin; its gene expression was exclusively induced during nodule development. LjAPN1 was most abundantly expressed in the infected cells in the nodules. Our findings indicate that LjAPN1 is required for the development and persistence of functional (nitrogen‐fixing) symbiosis in a rhizobial strain‐dependent manner, and thus determines compatibility between M. loti and L. japonicus at the level of nitrogen fixation.  相似文献   

15.
We adapted PCR-based signature-tagged mutagenesis (STM) to Pseudomonas aeruginosa. A collection of 1056 mutants was screened in a chronic lung infection rat model. Thirteen mutants were confirmed to be attenuated. Analysis revealed that these STM mutants represented transposon insertions into eight genes previously described in databases, three genes encoding proteins sharing identity with hypothetical proteins and two genes that shared no significant identity with sequences in databases. Five strains mutated in genes involved in protein degradation, stress tolerance, cation transport, ABC transporter, and an unknown protein were shown to be highly attenuated when tested individually in the rat chronic lung infection model.  相似文献   

16.
Pathogenic Yersinia species are associated with both localized and systemic infections in mammalian hosts. In this study, signature-tagged transposon mutagenesis was used to identify Yersinia enterocolitica genes required for survival in a mouse model of infection. Approximately 2000 transposon insertion mutants were screened for attenuation. This led to the identification of 55 mutants defective for survival in the animal host, as judged by their ability to compete with the wild-type strain in mixed infections. A total of 28 mutants had transposon insertions in the virulence plasmid, validating the screen. Two of the plasmid mutants with severe virulence defects had insertions in an uncharacterized region. Several of the chromosomal insertions were in a gene cluster involved in O-antigen biosynthesis. Other chromosomal insertions identified genes not previously demonstrated as being required for in vivo survival of Y. enterocolitica. These include genes involved in the synthesis of outer membrane components, stress response and nutrient acquisition. One severely attenuated mutant had an insertion in a homologue of the pspC gene (phage shock protein C) of Escherichia coli. The phage shock protein operon has no known biochemical or physiological function in E. coli, but is apparently essential for the survival of Y. enterocolitica during infection.  相似文献   

17.
18.
Transposon mutagenesis and single-gene deletion are two methods applied in genome-wide gene knockout in bacteria 1,2. Although transposon mutagenesis is less time consuming, less costly, and does not require completed genome information, there are two weaknesses in this method: (1) the possibility of a disparate mutants in the mixed mutant library that counter-selects mutants with decreased competition; and (2) the possibility of partial gene inactivation whereby genes do not entirely lose their function following the insertion of a transposon. Single-gene deletion analysis may compensate for the drawbacks associated with transposon mutagenesis. To improve the efficiency of genome-wide single gene deletion, we attempt to establish a high-throughput technique for genome-wide single gene deletion using Streptococcus sanguinis as a model organism. Each gene deletion construct in S. sanguinis genome is designed to comprise 1-kb upstream of the targeted gene, the aphA-3 gene, encoding kanamycin resistance protein, and 1-kb downstream of the targeted gene. Three sets of primers F1/R1, F2/R2, and F3/R3, respectively, are designed and synthesized in a 96-well plate format for PCR-amplifications of those three components of each deletion construct. Primers R1 and F3 contain 25-bp sequences that are complementary to regions of the aphA-3 gene at their 5'' end. A large scale PCR amplification of the aphA-3 gene is performed once for creating all single-gene deletion constructs. The promoter of aphA-3 gene is initially excluded to minimize the potential polar effect of kanamycin cassette. To create the gene deletion constructs, high-throughput PCR amplification and purification are performed in a 96-well plate format. A linear recombinant PCR amplicon for each gene deletion will be made up through four PCR reactions using high-fidelity DNA polymerase. The initial exponential growth phase of S. sanguinis cultured in Todd Hewitt broth supplemented with 2.5% inactivated horse serum is used to increase competence for the transformation of PCR-recombinant constructs. Under this condition, up to 20% of S. sanguinis cells can be transformed using ~50 ng of DNA. Based on this approach, 2,048 mutants with single-gene deletion were ultimately obtained from the 2,270 genes in S. sanguinis excluding four gene ORFs contained entirely within other ORFs in S. sanguinis SK36 and 218 potential essential genes. The technique on creating gene deletion constructs is high throughput and could be easy to use in genome-wide single gene deletions for any transformable bacteria.  相似文献   

19.
The development of efficient non-viral methodologies for genome-wide insertional mutagenesis and gene tagging in mammalian cells is highly desirable for functional genomic analysis. Here we describe transposon mediated mutagenesis (TRAMM), using naked DNA vectors based on the Drosophila hydei transposable element Minos. By simple transfections of plasmid Minos vectors in HeLa cells, we have achieved high frequency generation of cell lines, each containing one or more stable chromosomal integrations. The Minos-derived vectors insert in different locations in the mammalian genome. Genome-wide mutagenesis in HeLa cells was demonstrated by using a Minos transposon containing a lacZ–neo gene-trap fusion to generate a HeLa cell library of at least 105 transposon insertions in active genes. Multiple gene traps for six out of 12 active genes were detected in this library. Possible applications of Minos-based TRAMM in functional genomics are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号