首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As retrograde labeling retinal ganglion cells (RGCs) can isolate RGCs somata from dying sites, it has become the gold standard for counting RGCs in RGCs survival and regeneration experiments. Many studies have been performed in mammalian animals to research RGCs survival after optic nerve injury. However, retrograde labeling of RGCs in adult zebrafish has not yet been reported, though some alternative methods can count cell numbers in retinal ganglion cell layers (RGCL). Considering the small size of the adult zebrafish skull and the high risk of death after drilling on the skull, we open the skull with the help of acid-etching and seal the hole with a light curing bond, which could significantly improve the survival rate. After absorbing the dyes for 5 days, almost all the RGCs are labeled. As this method does not need to transect the optic nerve, it is irreplaceable in the research of RGCs survival after optic nerve crush in adult zebrafish. Here, we introduce this method step by step and provide representative results.  相似文献   

2.
Dissociated neonatal rat retinal ganglion cells can be maintained by the addition of an extract from the neonatal superior colliculus. This extract can support 95% of ganglion cells over 24 h in culture; in addition it promotes the expression of neurites from these cells. This report describes the purification of a neurotrophic factor from the superior colliculus which supports the survival of 80% of retinal ganglion cells over 24 h in vitro. The purification procedure involves a combination of dye-ligand, anion-exchange, and molecular sieve chromatography. The purified neurotrophic factor has a Stokes radius of approximately 200 A using molecular sieve chromatography in the presence of a chaotropic agent. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified factor indicates that it is a glycoprotein that migrates with a molecular mass greater than 400 kDa. Further characterization of this high-molecular-mass glycoprotein by enzymatic digestion demonstrated that it is a chondroitin sulfate proteoglycan. This factor is clearly distinguishable from other neurotrophic factors that have an effect on retinal ganglion cells such as brain-derived neurotrophic factor and fibroblast growth factor. The chondroitin sulfate proteoglycan from the neonatal superior colliculus is the first proteoglycan to be identified as a neurotrophic factor.  相似文献   

3.
4.
Retrograde labelling of retinal ganglion cells with optic nerve transection often leads to degeneration of ganglion cells in prolonged experiments. Here we report that an intact optic nerve could uptake retrograde tracers applied onto the surface of the nerve, leading to high efficiency labelling of ganglion cells in the retina with long-term survival of cells. This method labelled a similar number of ganglion cells (2289±174 at 2 days) as the retrograde labeling technique from the superior colliculus (2250±94) or optic nerve stump (2279±114) after transection. This finding provides an alternative way to label retinal ganglion cells without damaging the optic tract. This will facilitate anatomical studies in identifying the morphology and connectivity of retinal ganglion cells, allowing secondary or triple labelling manipulations for long-term investigations.  相似文献   

5.
青光眼视神经损伤的最后共同通路为视网膜神经节细胞的凋亡。但确切机制尚未阐明。为此,人们进行了大量相关体内、体外实验并取得一定成果。本文从凋亡的激发因素、信号传导及基因调控加以阐述。  相似文献   

6.
Several aquaporins (AQPs) have been identified to be present in the eyes, and it has been suggested that they are involved in the movement of water and small solutes. AQP6, which has low water permeability and transports mainly anions, was recently discovered in the eyes. In the present study, we investigate the localization of AQP6 in the rat retina and show that AQP6 is selectively localized to the ganglion cell layer and the outer plexiform layer. Along with the gradual decrease in retinal ganglion cells after a crushing injury of optic nerve, immunofluorescence signals of AQP6 gradually decreased. Confocal microscope images confirmed AQP6 expression in retinal ganglion cells and Müller cells in vitro. Therefore, AQP6 might participate in water and anion transport in these cells.  相似文献   

7.
8.
Current knowledge of saccade-blink interactions suggests that blinks have paradoxical effects on saccade generation. Blinks suppress saccade generation by attenuating the oculomotor drive command in structures like the superior colliculus (SC), but they also disinhibit the saccadic system by removing the potent inhibition of pontine omnipause neurons (OPNs). To better characterize these effects, we evoked the trigeminal blink reflex by delivering an air puff to one eye as saccades were evoked by sub-optimal stimulation of the SC. For every stimulation site, the peak and average velocities of stimulation with blink movements (SwBMs) were lower than stimulation-only saccades (SoMs), supporting the notion that the oculomotor drive is weakened in the presence of a blink. In contrast, the duration of the SwBMs was longer, consistent with the hypothesis that the blink-induced inhibition of the OPNs could prolong the window of time available for oculomotor commands to drive an eye movement. The amplitude of the SwBM could also be larger than the SoM amplitude obtained from the same site, particularly for cases in which blink-associated eye movements exhibited the slowest kinematics. The results are interpreted in terms of neural signatures of saccade-blink interactions.  相似文献   

9.
10.
The concentration of naturally synthesized nerve growth factor (NGF) was measured in various tissues of adult rats, using a highly sensitive two-site enzyme immunoassay. The highest concentration was found in the superior cervical sympathetic ganglion (SCG). Transection of the postganglionic external carotid nerve (ECN) reduced the ganglionic level of NGF more than did section of the internal carotid nerve (ICN). When both the preganglionic nerve and the ECN were cut, the ganglionic NGF level decreased even more. On the other hand, when the preganglionic nerve and the ICN were both sectioned, leaving the ECN intact, endogenous NGF content in the SCG was significantly enhanced 3-9 h after operation. Bilateral extirpation of submaxillary gland produced a rapid decrease in ganglionic NGF 3-6 h after operation, and even unilateral removal of one salivary gland caused a decrease in both ganglia, which was however much greater in the ipsi- than in the contralateral ganglion. Removal of the eyeballs caused a much smaller reduction in ganglionic NGF than did removal of the glands. These results suggest that the endogenous NGF that accumulates in the SCG is mostly synthesized in the submaxillary gland rather than in the iris, and that it is transported to the SCG, mostly via the ipsilateral ECN.  相似文献   

11.
Tissue slices from the superior colliculi (SC) of the rabbit were superfused and investigated 1 week after unilateral eye removal. Amino acid levels were determined both in the tissue slices and in the medium after chemical depolarisation (56 mM K). The amino acid determinations were done fluorimetrically by precolumn derivation and HPLC separation. Colliculi contralateral to the enucleation exhibited a 16% reduction in glutamate compared with the ipsilateral colliculi. The Ca-dependent release of glutamate or other amino acids tested was not appreciably affected by enucleation. However, both the total and the Ca-independent release of glutamate was lower from contralateral SC slices compared with the ipsilateral slices. The results do not favour glutamate as the major optic nerve transmitter in the rabbit, but do not rule out glutamate as a transmitter in a minor population of retinal fibres.  相似文献   

12.
目的:VEGF165b是新发现的血管内皮生长因子的变构体之一,本研究将观察其对糖尿病大鼠视网膜神经节细胞的抗凋亡作用.方法:采用四氧嘧啶诱发糖尿病大鼠模型,分为正常对照组(CON),糖尿病组(DM),糖尿病VEGF165b低剂量治疗组(DMT1)、中剂量治疗组(DMT2),糖尿病高剂量治疗组(DMT3),糖尿病单纯胰岛素治疗组(DMT4),所有治疗组在糖尿病成模后1个月开始治疗.2个月后处死各组大鼠,摘取眼球进行光镜形态学观察、核苷酸末端转移酶介导的dUTP缺口翻译法(TUNEL法)视网膜神经节细胞凋亡检测.结果:VEGF165b治疗使糖尿病大鼠视网膜光镜形态学改变减轻,能有效的抑制视网膜神经节细胞凋亡.VEGF165b治疗组视网膜神经节凋亡细胞数较DM组明显减少(P<0.01),与糖尿病大鼠单纯胰岛素治疗组相比差异也有统计学意义.随着VEGF165b浓度的增加视网膜神经节细胞凋亡个数减少,但1ng/μL组与10ng/μL组相比差异无统计学意义.结论:VEGF165b对视网膜神经节细胞有保护作用,可能对糖尿病视网膜病变具有治疗有意义.  相似文献   

13.
To understand visual functions mediated by intrinsically photosensitive melanopsin-expressing retinal ganglion cells (mRGCs), it is important to elucidate axonal projections from these cells into the brain. Initial studies reported that melanopsin is expressed only in retinal ganglion cells within the eye. However, recent studies in Opn4-Cre mice revealed Cre-mediated marker expression in multiple brain areas. These discoveries complicate the use of melanopsin-driven genetic labeling techniques to identify retinofugal projections specifically from mRGCs. To restrict labeling to mRGCs, we developed a recombinant adeno-associated virus (AAV) carrying a Cre-dependent reporter (human placental alkaline phosphatase) that was injected into the vitreous of Opn4-Cre mouse eyes. The labeling observed in the brain of these mice was necessarily restricted specifically to retinofugal projections from mRGCs in the injected eye. We found that mRGCs innervate multiple nuclei in the basal forebrain, hypothalamus, amygdala, thalamus and midbrain. Midline structures tended to be bilaterally innervated, whereas the lateral structures received mostly contralateral innervation. As validation of our approach, we found projection patterns largely corresponded with previously published results; however, we have also identified a few novel targets. Our discovery of projections to the central amygdala suggests a possible direct neural pathway for aversive responses to light in neonates. In addition, projections to the accessory optic system suggest that mRGCs play a direct role in visual tracking, responses that were previously attributed to other classes of retinal ganglion cells. Moreover, projections to the zona incerta raise the possibility that mRGCs could regulate visceral and sensory functions. However, additional studies are needed to investigate the actual photosensitivity of mRGCs that project to the different brain areas. Also, there is a concern of "overlabeling" with very sensitive reporters that uncover low levels of expression. Light-evoked signaling from these cells must be shown to be of sufficient sensitivity to elicit physiologically relevant responses.  相似文献   

14.
The retinal ganglion cells (RGCs) have diverse morphology and physiology. Although some studies show that correlations between morphological properties and physiological properties exist in cat RGCs, these properties are much less distinct and their correlations are unknown in mouse RGCs. In this study, using three-dimensional digital neuron reconstruction, we systematically analyzed twelve morphological parameters of mouse RGCs as they developed in the first four postnatal weeks. The development of these parameters fell into three different patterns and suggested that contact from bipolar cells and eye opening might play important roles in RGC morphological development. Although there has been a general impression that the morphological parameters are not independent, such as RGCs with larger dendritic fields usually have longer but sparser dendrites, there was not systematic study and statistical analysis proving it. We used Pearson''s correlation coefficients to determine the relationship among these morphological parameters and demonstrated that many morphological parameters showed high statistical correlation. In the same cells we also measured seven physiological parameters using whole-cell patch-clamp recording, focusing on intrinsic excitability. We previously reported the increase in intrinsic excitability in mouse RGCs during early postnatal development. Here we showed that strong correlations also existed among many physiological parameters that measure the intrinsic excitability. However, Pearson''s correlation coefficient revealed very limited correlation across morphological and physiological parameters. In addition, principle component analysis failed to separate RGCs into clusters using combined morphological and physiological parameters. Therefore, despite strong correlations within the morphological parameters and within the physiological parameters, postnatal mouse RGCs had only limited correlation between morphology and physiology. This may be due to developmental immaturity, or to selection of parameters.  相似文献   

15.
As a preliminary step to studying changes in axonal transport in regenerating neurons, we have analyzed the composition and organization of polypeptides normally axonally transported in a neuronal system capable of regeneration, i.e., the retinal ganglion cells of the toad, Bufo marinus. We labeled proteins synthesized in the retina with 35S-methionine and subsequently used one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis to analyze labeled, transported proteins in tissues containing segments of the axons (the optic nerve, optic tract, and optic tecta) of the retinal ganglion cells. The transported polypeptides could be divided into five groups according to their apparent transport velocities. Many of the polypeptides of each group were electrophoretically similar to polypeptides of corresponding groups previously described in rabbit and guinea pig retinal ganglion cells, and in some cases, additional properties of the polypeptides indicated that the transported materials of the two vertebrate classes were homologous. These results serve two purposes. First they establish the retinal ganglion cells of the toad Bufo marinus as a model system in which changes in gene expression related to regeneration may be studied. Second they show that the organization and many aspects of the composition of axonal transport in retinal ganglion cells have been conserved in animals as unrelated as amphibians, and mammals.  相似文献   

16.

Objective

Retrograde trans-synaptic degeneration of retinal ganglion cell layer (GCL) has been proposed as one of the mechanisms contributing to permanent disability after visual pathway damage. We set out to test this mechanism taking advantage of the new methods for imaging the macula with high resolution by optical coherence tomography (OCT) in patients with lesions in the posterior visual pathway. Additionally, we explored the association between thinning of GCL as an imaging marker of visual impairment such as visual field defects.

Methods

Retrospective case note review of patients with retrogeniculate lesions studied by spectral domain OCT of the macula and quadrant pattern deviation (PD) of the visual fields.

Results

We analysed 8 patients with either hemianopia or quadrantanopia due to brain lesions (stroke  = 5; surgery  = 2; infection  = 1). We found significant thinning of the GCL in the projecting sector of the retina mapping to the brain lesion. Second, we found strong correlation between the PD of the visual field quadrant and the corresponding macular GCL sector for the right (R = 0.792, p<0.001) and left eyes (R = 0.674, p<0.001).

Conclusions

The mapping between lesions in the posterior visual pathway and their projection in the macula GCL sector corroborates retrograde trans-synaptic neuronal degeneration after brain injury as a mechanism of damage with functional consequences. This finding supports the use of GCL thickness as an imaging marker of trans-synaptic degeneration in the visual pathway after brain lesions.  相似文献   

17.
18.
Injury to retinal ganglion cell (RGC) axons leads to selective loss of RGCs and vision. Previous studies have shown that exogenous neurotrophic factors promote RGC survival. We investigated the neuroprotective effects of oncostatin M (OSM), a member of the IL-6 family of cytokines, on pattern electroretinogram (PERG) and RGC survival after optic nerve crush (ON-crush) in the mouse. BALB/C mice received ON-crush in the left eyes for either 4-second or 1-second duration (4-s or 1-s). Fluoro-gold retrograde labeling was used to identify RGCs. RGC function was assessed by PERG measurement. OSM or CNTF protein was injected intravitreally immediately after ON-crush. OSM responsive cells were identified by localization of increased STAT3 phosphorylation. Significant higher RGC survival (46% of untreated control) was seen in OSM-treated eyes when assessed 2 weeks after 4-s ON-crush as compared to that (14% of untreated control) of the PBS-treated eyes (P<0.001). In addition, PERG amplitude was significantly higher in eyes treated with OSM or CNTF 1 week after 1-s ON-crush (36% of baseline) as compared with the amplitude of PBS-treated eyes (19% of the baseline, P = 0.003). An increase in STAT3 phosphorylation was localized in Müller layer after OSM treatment, suggesting that Müller cells mediate the effect of OSM. Our results demonstrate that one single injection of either OSM or CNTF after ON-crush improves RGC survival together with their electrophysiological activity. These data provide proof-of-concept for using neurotrophic factors OSM and CNTF for RGC degenerative diseases, including glaucoma and acute optic nerve trauma.  相似文献   

19.
We have investigated the metabolic turnover of axonally transported phospholipids in myelinated axons (optic tract) and nerve endings (superior colliculus) of retinal ganglion cells. One week following intraocular injection of [2-3H]glycerol, turnover rates for individual phospholipid classes in the retina (which contains a number of other cell types in addition to the ganglion cells) were all very similar to each other, with apparent half-lives of approximately 7 days. Apparent half-lives of labeled phospholipids in superior colliculus (presumably primarily in retinal ganglion cell nerve endings) were 10 days for both choline and inositol phosphoglycerides and 13 days for both serine and diacylethanolamine phosphoglycerides. Subcellular fractionation data obtained from superior colliculus at various times after injection suggested that apparent turnover rates determined for nerve ending phospholipids probably were not significantly affected by transfer of axonally transported 3H lipids into myelin. Apparent half-lives for phospholipids in optic tract were somewhat longer than in superior colliculus, ranging from 11 to 18 days. The slower turnover rates in optic tract may, in part, reflect the transfer of some axonal lipids to the more metabolically stable pool of lipids in the myelin ensheathing the retinal ganglion cell axons. In both optic tract and superior colliculus, apparent half-lives for axonally transported phospholipids labeled with [32P]phosphate were only slightly longer than for [2-3H]glycerol, while those for [14C]choline and [3H]acetate were markedly longer, indicating differing degrees of metabolic conservation or reutilization of these precursors relative to glycerol.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号