首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The origin recognition complex (ORC) plays a central role in the initiation of DNA replication in eukaryotic cells. It interacts with origins of DNA replication in chromosomal DNA and recruits additional replication proteins to form functional initiation complexes. These processes have not been well characterized at the biochemical level except in the case of Saccharomyces cerevisiae ORC. We report here the expression, purification, and initial characterization of Schizosaccharomyces pombe ORC (SpORC) containing six recombinant subunits. Purified SpORC binds efficiently to the ars1 origin of DNA replication via the essential Nterminal domain of the SpOrc4 subunit which contains nine AT-hook motifs. Competition binding experiments demonstrated that SpORC binds preferentially to DNA molecules rich in AT-tracts, but does not otherwise exhibit a high degree of sequence specificity. The complex is capable of binding to multiple sites within the ars1 origin of DNA replication with similar affinities, indicating that the sequence requirements for origin recognition in S. pombe are significantly less stringent than in S. cerevisiae. We have also demonstrated that SpORC interacts directly with Cdc18p, an essential fission yeast initiation protein, and recruits it to the ars1 origin in vitro. Recruitment of Cdc18p to chromosomal origins is a likely early step in the initiation of DNA replication in vivo. These data indicate that the purified recombinant SpORC retains at least two of its primary biological functions and that it will be useful for the eventual reconstitution of the initiation reaction with purified proteins.  相似文献   

2.
Budding yeast (Saccharomyces cerevisiae) origin recognition complex (ORC) requires ATP to bind specific DNA sequences, whereas fission yeast (Schizosaccharomyces pombe) ORC binds to specific, asymmetric A:T-rich sites within replication origins, independently of ATP, and frog (Xenopus laevis) ORC seems to bind DNA non-specifically. Here we show that despite these differences, ORCs are functionally conserved. Firstly, SpOrc1, SpOrc4 and SpOrc5, like those from other eukaryotes, bound ATP and exhibited ATPase activity, suggesting that ATP is required for pre-replication complex (pre-RC) assembly rather than origin specificity. Secondly, SpOrc4, which is solely responsible for binding SpORC to DNA, inhibited up to 70% of XlORC-dependent DNA replication in Xenopus egg extract by preventing XlORC from binding to chromatin and assembling pre-RCs. Chromatin-bound SpOrc4 was located at AT-rich sequences. XlORC in egg extract bound preferentially to asymmetric A:T-sequences in either bare DNA or in sperm chromatin, and it recruited XlCdc6 and XlMcm proteins to these sequences. These results reveal that XlORC initiates DNA replication preferentially at the same or similar sites to those targeted in S.pombe.  相似文献   

3.
Kong D  DePamphilis ML 《The EMBO journal》2002,21(20):5567-5576
Previous studies have shown that the Schizo saccharomyces pombe Orc4 subunit is solely responsible for in vitro binding of origin recognition complex (ORC) to specific AT-rich sites within S.pombe replication origins. Using ARS3001, a S.pombe replication origin consisting of four genetically required sites, we show that, in situ as well as in vitro, Orc4 binds strongly to the Delta3 site, weakly to the Delta6 site and not at all to the remaining sequences. In situ, the footprint over Delta3 is extended during G(1) phase, but only when Cdc18 is present and Mcm proteins are bound to chromatin. Moreover, this footprint extends into the adjacent Delta2 site, where leading strand DNA synthesis begins. Therefore, we conclude that ARS3001 consists of a single primary ORC binding site that assembles a pre-replication complex and initiates DNA synthesis, plus an additional novel origin element (Delta9) that neither binds ORC nor functions as a centromere, but does bind an as yet unidentified protein throughout the cell cycle. Schizosaccharomyces pombe may be an appropriate paradigm for the complex origins found in the metazoa.  相似文献   

4.
5.
The interaction of the origin recognition complex (ORC) with replication origins is a critical parameter in eukaryotic replication initiation. In mammals the ORC remains bound except during mitosis, thus the localization of ORC complexes allows localization of origins. A monoclonal antibody that recognizes human ORC1 was used to localize ORC complexes in populations of human MOLT-4 cells separated by cell cycle position using centrifugal elutriation. ORC1 staining in cells in early G1 is diffuse and primarily peripheral. As the cells traverse G1, ORC1 accumulates and becomes more localized towards the center of the nucleus, however around the G1/S boundary the staining pattern changes and ORC1 appears peripheral. By mid to late S phase ORC1 immunofluorescence is again concentrated at the nuclear center. During anaphase, ORC1 staining is localized mainly in the pericentriolar regions. These findings suggest that concerted movements of origin DNA sequences in addition to the previously documented assembly and disassembly of protein complexes are an important aspect of replication initiation loci in eukaryotes.  相似文献   

6.
We have developed a genomic footprinting protocol which allows us to examine protein-DNA interactions at single copy chromosomal origins of DNA replication in the budding yeast Saccharomyces cerevisiae. We show that active replication origins oscillate between two chromatin states during the cell cycle: an origin recognition complex (ORC)-dependent post-replicative state and a Cdc6p-dependent pre-replicative state. Furthermore, we show that both post- and pre-replicative complexes can form efficiently on closely apposed replicators. Surprisingly, ARS301 which is active as an origin on plasmids but not in its normal chromosomal location, forms ORC- and Cdc6p-dependent complexes in both its active and inactive contexts. Thus, although ORC and Cdc6p are essential for initiation, their binding is not sufficient to dictate origin use.  相似文献   

7.
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.  相似文献   

8.
This report describes the isolation of ORC5, the gene encoding the fifth largest subunit of the origin recognition complex, and the properties of mutants with a defective allele of ORC5. The orc5-1 mutation caused temperature-sensitive growth and, at the restrictive temperature, caused cell cycle arrest. At the permissive temperature, the orc5-1 mutation caused an elevated plasmid loss rate that could be suppressed by additional tandem origins of DNA replication. The sequence of ORC5 revealed a potential ATP binding site, making Orc5p a candidate for a subunit that mediates the ATP-dependent binding of ORC to origins. Genetic interactions among orc2-1 and orc5-1 and other cell cycle genes provided further evidence for a role for the origin recognition complex (ORC) in DNA replication. The silencing defect caused by orc5-1 strengthened previous connections between ORC and silencing, and combined with the phenotypes caused by orc2 mutations, suggested that the complex itself functions in both processes.  相似文献   

9.
Origins and complexes: the initiation of DNA replication   总被引:6,自引:0,他引:6  
Eukaryotic DNA is organized for replication as multiple replicons. DNA synthesis in each replicon is initiated at an origin of replication. In both budding yeast, Saccharomyces cerevisiae and fission yeast, Schizosaccharomyces pombe, origins contain specific sequences that are essential for initiation, although these differ significantly between the two yeasts with those of S. pombe being more complex then those of S. cerevisiae. However, it is not yet clear whether the replication origins of plants contain specific essential sequences or whether origin sites are determined by features of chromatin structure. In all eukaryotes there are several biochemical events that must take place before initiation can occur. These are the marking of the origins by the origin recognition complex (ORC), the loading onto the origins, in a series of steps, of origin activation factors including the MCM proteins, and the initial denaturation of the double helix to form a replication "bubble". Only then can the enzymes that actually initiate replication, primase and DNA polymerase-alpha, gain access to the template. In many cells this complex series of events occurs only once per cell cycle, ensuring that DNA is not re-replicated within one cycle. However, regulated re-replication of DNA within one cell cycle (DNA endoreduplication) is relatively common in plants, indicating that the "once-per-cycle" controls can be overridden.  相似文献   

10.
The origin recognition complex (ORC) has an important function in determining the initiation sites of DNA replication. In higher eukaryotes, ORC lacks sequence-specific DNA binding, and the mechanisms of ORC recruitment and origin determination are poorly understood. ORC is recruited with high efficiency to the Epstein-Barr virus origin of plasmid replication (OriP) through a complex mechanism involving interactions with the virus-encoded EBNA1 protein. We present evidence that ORC recruitment to OriP and DNA replication function depends on RGG-like motifs, referred to as LR1 and LR2, in the EBNA1 amino-terminal domain. Moreover, we show that LR1 and LR2 recruitment of ORC is RNA dependent. HMGA1a, which can functionally substitute for LR1 and LR2 domain, can also recruit ORC in an RNA-dependent manner. EBNA1 and HMGA1a RGG motifs bound to structured G-rich RNA, as did ORC1 peptides, which interact with EBNA1. RNase A treatment of cellular chromatin released a fraction of the total ORC, suggesting that ORC association with chromatin, and possibly cellular origins, is stabilized by RNA. We propose that structural RNA molecules mediate ORC recruitment at some cellular and viral origins, similar to OriP.  相似文献   

11.
The origin recognition complex (ORC) is a six-subunit, ATP-regulated, DNA binding protein that is required for the formation of the prereplicative complex (pre-RC), an essential replication intermediate formed at each origin of DNA replication. In this study, we investigate the mechanism of ORC function during pre-RC formation and how ATP influences this event. We demonstrate that ATP hydrolysis by ORC requires the coordinate function of the Orc1 and Orc4 subunits. Mutations that eliminate ORC ATP hydrolysis do not support cell viability and show defects in pre-RC formation. Pre-RC formation involves reiterative loading of the putative replicative helicase, Mcm2-7, at the origin. Importantly, preventing ORC ATP hydrolysis inhibits this repeated Mcm2-7 loading. Our findings indicate that ORC is part of a helicase-loading molecular machine that repeatedly assembles Mcm2-7 complexes onto origin DNA and suggest that the assembly of multiple Mcm2-7 complexes plays a critical role in origin function.  相似文献   

12.
The six-subunit origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae. Yeast ORC binds specifically to origins of replication and serves as a platform for the assembly of additional initiation factors, such as Cdc6 and the Mcm proteins. Human homologues of all six ORC subunits have been identified by sequence similarity to their yeast counterparts, but little is known about the biochemical characteristics of human ORC (HsORC). We have extracted HsORC from HeLa cell chromatin and probed its subunit composition using specific antibodies. The endogenous HsORC, identified in these experiments, contained homologues of Orc1-Orc5 but lacked a putative homologue of Orc6. By expressing HsORC subunits in insect cells using the baculovirus system, we were able to identify a complex containing all six subunits. To explore the subunit-subunit interactions that are required for the assembly of HsORC, we carried out extensive co-immunoprecipitation experiments with recombinant ORC subunits expressed in different combinations. These studies revealed the following binary interactions: HsOrc2-HsOrc3, HsOrc2-HsOrc4, HsOrc3-HsOrc4, HsOrc2-HsOrc6, and HsOrc3-HsOrc6. HsOrc5 did not form stable binary complexes with any other HsORC subunit but interacted with sub-complexes containing any two of subunits HsOrc2, HsOrc3, or HsOrc4. Complex formation by HsOrc1 required the presence of HsOrc2, HsOrc3, HsOrc4, and HsOrc5 subunits. These results suggest that the subunits HsOrc2, HsOrc3, and HsOrc4 form a core upon which the ordered assembly of HsOrc5 and HsOrc1 takes place. The characterization of HsORC should facilitate the identification of human origins of DNA replication.  相似文献   

13.
Initiation of DNA replication in eukaryotic cells is regulated through the ordered assembly of replication complexes at origins of replication. Association of Cdc45 with the origins is a crucial step in assembly of the replication machinery, hence can be considered a target for the regulation of origin activation. To examine the process required for SpCdc45 loading, we isolated fission yeast SpSld3, a counterpart of budding yeast Sld3 that interacts with Cdc45. SpSld3 associates with the replication origin during G1-S phases and this association depends on Dbf4-dependent (DDK) kinase activity. In the corresponding period, SpSld3 interacts with minichromosome maintenance (MCM) proteins and then with SpCdc45. A temperature-sensitive sld3-10 mutation suppressed by the multicopy of the sna41+ encoding SpCdc45 impairs loading of SpCdc45 onto chromatin. In addition, this mutation leads to dissociation of preloaded Cdc45 from chromatin in the hydroxyurea-arrested S phase, and DNA replication upon removal of hydroxyurea is retarded. Thus, we conclude that SpSld3 is required for stable association of Cdc45 with chromatin both in initiation and elongation of DNA replication. The DDK-dependent origin association suggests that SpSld3 is involved in temporal regulation of origin firing.  相似文献   

14.
In many organisms, the replication of DNA requires the binding of a protein called the initiator to DNA sites referred to as origins of replication. Analyses of multiple initiator proteins bound to their cognate origins have provided important insights into the mechanism by which DNA replication is initiated. To extend this level of analysis to the study of eukaryotic chromosomal replication, we have investigated the architecture of the Saccharomyces cerevisiae origin recognition complex (ORC) bound to yeast origins of replication. Determination of DNA residues important for ORC-origin association indicated that ORC interacts preferentially with one strand of the ARS1 origin of replication. DNA binding assays using ORC complexes lacking one of the six subunits demonstrated that the DNA binding domain of ORC requires the coordinate action of five of the six ORC subunits. Protein-DNA cross-linking studies suggested that recognition of origin sequences is mediated primarily by two different groups of ORC subunits that make sequence-specific contacts with two distinct regions of the DNA. Implications of these findings for ORC function and the mechanism of initiation of eukaryotic DNA replication are discussed.  相似文献   

15.
16.
Initiation of DNA replication in eukaryotes requires the origin recognition complex (ORC) and other proteins that interact with DNA at origins of replication. In budding yeast, the temperature-sensitive orc2-1 mutation alters these interactions in parallel with defects in initiation of DNA replication and in checkpoints that depend on DNA replication forks. Here we show that DNA-damaging drugs modify protein-DNA interactions at budding yeast replication origins in association with lethal effects that are enhanced by the orc2-1 mutation or suppressed by a different mutation in ORC. A dosage suppressor screen identified the budding yeast co-chaperone protein Mge1p as a high copy suppressor of the orc2-1-specific lethal effects of adozelesin, a DNA-alkylating drug. Ectopic expression of Mge1p also suppressed the temperature sensitivity and initiation defect conferred by the orc2-1 mutation. In wild type cells, ectopic expression of Mge1p also suppressed the lethal effects of adozelesin in parallel with the suppression of adozelesin-induced alterations in protein-DNA interactions at origins, stimulation of initiation of DNA replication, and binding of the precursor form of Mge1p to nuclear chromatin. Mge1p is the budding yeast homologue of the Escherichia coli co-chaperone protein GrpE, which stimulates initiation at bacterial origins of replication by promoting interactions of initiator proteins with origin sequences. Our results reveal a novel, proliferation-dependent cytotoxic mechanism for DNA-damaging drugs that involves alterations in the function of initiation proteins and their interactions with DNA.  相似文献   

17.
Initiation of eukaryotic DNA replication commences when the origin recognition complex (ORC) binds to DNA, recruiting helicases, polymerases, and necessary cofactors. While the biochemical mechanism and factors involved in replication initiation appear to be highly conserved, the DNA sequences at which these events take place in different organisms are not. Thus, while ORC appears to bind to specific DNA sequences in budding yeast, there is increasing new evidence that metazoan ORC complexes do not rely on sequence to be directed to origins of replication. Here, we review examples of specific and non-specific initiation, and we consider what, if not DNA sequence, accounts for DNA binding of ORC to defined regions in eukaryotic genomes.  相似文献   

18.
Genomic integrity is maintained by checkpoints that guard against undesired replication after DNA damage. Here, we show that CDT1, a licensing factor of the pre-replication complex (preRC), is rapidly proteolysed after UV- or gamma-irradiation. The preRC assembles on replication origins at the end of mitosis and during G1 to license DNA for replication in S phase. Once the origin recognition complex (ORC) binds to origins, CDC6 and CDT1 associate with ORC and promote loading of the MCM2-7 proteins onto chromatin, generating the preRC. We show that radiation-mediated CDT1 proteolysis is independent of ATM and CHK2 and can occur in G1-phase cells. Loss of the COP9-signalosome (CSN) or CUL4-ROC1 complexes completely suppresses CDT1 proteolysis. CDT1 is specifically polyubiquitinated by CUL4 complexes and the interaction between CDT1 and CUL4 is regulated in part by gamma-irradiation. Our study reveals an evolutionarily conserved and uncharacterized G1 checkpoint that induces CDT1 proteolysis by the CUL4-ROC1 ubiquitin E3 ligase and CSN complexes in response to DNA damage.  相似文献   

19.
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.  相似文献   

20.
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号