首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we tested the hypothesis that human neutrophil alpha-defensins (HNPs) inhibit hepatic glucose production through a signaling pathway distinct from insulin. The effect of HNP-1 on fasting blood glucose levels and the expression of hepatic gluconeogenic genes was first examined. Using hyperinsulinemic-euglycemic clamps, we determined the effect of HNP-1 on endogenous glucose production, hepatic expression of key gluconeogenic genes and glucose uptake in skeletal muscle in Zucker diabetic fatty rats. In isolated primary hepatocytes, we studied the effect of HNP-1 and -2 on glucose production, expression of gluconeogenic genes, and phosphorylation of Akt, c-Src, and FoxO1. Our results show that HNP-1 reduced blood glucose levels of both normal mice and Zucker diabetic fatty rats predominantly through suppression of hepatic glucose production. HNPs inhibited glycogenolysis and gluconeogenesis in isolated hepatocytes. HNPs also suppressed expression of key gluconeogenic genes including phosphoenoylpyruvate carboxyl kinase and glucose-6-phosphatase. To investigate the mechanism, we found that HNPs stimulated phosphorylation of Akt and FoxO1 without activating IRS1. Nevertheless, HNPs activated c-Src. Blockade of c-Src activity with either a chemical inhibitor PP2 or an alternative inhibitor CSK prevented the inhibitory effect of HNPs on gluconeogenesis. Together, our results support the hypothesis that HNPs can suppress hepatic glucose production through an intracellular mechanism distinct from the classical insulin signaling pathway.  相似文献   

2.
Free fatty acid (FFA) is believed to be a major environmental factor linking obesity to Type II diabetes. We have recently reported that FFA can induce gluconeogenesis in hepatocytes through p38 mitogen-activated protein kinase (p38). In this study, we have investigated the role of p38 in oleate-induced hepatic insulin resistance. Our results show that a prolonged treatment of primary hepatocytes with oleate blunted insulin suppression of hepatic gluconeogenesis, and decreased insulin-induced phosphorylation of Akt in a p38-dependent manner. Reduction of the insulin-induced Akt phosphorylation by oleate correlated with activation of p38. In the presence of p38 inhibition, prolonged exposure of hepatocytes to oleate failed to reduce insulin-stimulated phosphorylation of Akt. An siRNA against p38alpha prevented oleate suppression of the insulin-induced phosphorylation of Akt. Furthermore, a prolonged exposure of hepatocytes to oleate decreased insulin-induced tyrosine phosphorylation of IRS1/2, while slightly increasing serine phosphorylation of IRS. The decrease of insulin-stimulated tyrosine phosphorylation of IRS1/2 in hepatocytes by oleate was reversed by the inhibition of p38. We further show that a prolonged exposure of primary hepatocytes to oleate elevated the protein level of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in a p38-dependent manner, but had no effect on the mRNA level of PTEN. Knocking down the PTEN gene prevented oleate to inhibit insulin activation of Akt and insulin suppression of gluconeogenesis. Together, results from this study demonstrate a critical role for p38 in oleate-induced hepatic insulin resistance.  相似文献   

3.
4.
Impaired insulin receptor (IR) signaling leads to insulin resistance and type 2 diabetes mellitus. Several inhibitors of the IR tyrosine kinase activity have recently been described and associated with human insulin resistance. Among these negative regulators, protein tyrosine phosphatases (PTPs) are likely to play a pivotal role in IR signaling. Transgenic studies revealed that PTP1B and TCPTP are primary candidates but IR of these animals can be finally dephosphorylated, suggesting that other PTPs are also involved in the dephosphorylation of IR. In this study, we showed that receptor-type PTPepsilon (PTP epsilonM) dephosphorylated IR in rat primary hepatocytes and tyrosines 972, 1158, 1162 and 1163 were primary targets of PTP epsilonM. Wild type as well as substrate-trapping DA forms of PTPepsilonM suppressed phosphorylation of IR downstream enzymes such as Akt, extracellular regulated kinase (ERK) and glycogen synthase kinase 3 (GSK3). It was also demonstrated that PTPepsilonM suppressed insulin-induced glycogen synthesis and inhibited insulin-induced suppression of phosphoenol pyruvate carboxykinase (PEPCK) expression in primary hepatocytes. Furthermore, adenovirally introduced PTPepsilonM also exhibited inhibitory activity against suppression of PEPCK expression in mouse liver. These results suggest that PTPepsilonM is a negative regulator of IR signaling and involved in insulin-induced glucose metabolism mainly through direct dephosphorylation and inactivation of IR in hepatocytes and liver.  相似文献   

5.
6.
7.
The fibronectin binding integrins alpha5beta1 and alpha4beta1 generate signals pivotal for cell migration through distinct yet undefined mechanisms. For alpha5beta1, beta1-mediated activation of focal adhesion kinase (FAK) promotes c-Src recruitment to FAK and the formation of a FAK-Src signaling complex. Herein, we show that FAK expression is essential for alpha5beta1-stimulated cell motility and that exogenous expression of human alpha4 in FAK-null fibroblasts forms a functional alpha4beta1 receptor that promotes robust cell motility equal to the alpha5beta1 stimulation of wild-type and FAK-reconstituted fibroblasts. alpha4beta1-stimulated FAK-null cell spreading and motility were dependent on the integrity of the alpha4 cytoplasmic domain, independent of direct paxillin binding to alpha4, and were not affected by PRNK expression, a dominant-negative inhibitor of Pyk2. alpha4 cytoplasmic domain-initiated signaling led to a approximately 4-fold activation of c-Src which did not require paxillin binding to alpha4. Notably, alpha4-stimulated cell motility was inhibited by catalytically inactive receptor protein-tyrosine phosphatase alpha overexpression and blocked by the p50Csk phosphorylation of c-Src at Tyr-529. alpha4beta1-stimulated cell motility of triple-null Src(-/-), c-Yes(-/-), and Fyn(-/-) fibroblasts was dependent on c-Src reexpression that resulted in p130Cas tyrosine phosphorylation and Rac GTPase loading. As p130Cas phosphorylation and Rac activation are common downstream targets for alpha5beta1-stimulated FAK activation, our results support the existence of a novel alpha4 cytoplasmic domain connection leading to c-Src activation which functions as a FAK-independent linkage to a common motility-promoting signaling pathway.  相似文献   

8.
We have recently reported that osteopontin (OPN) stimulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells (Das, R., Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 28593-28606). However, the role(s) of OPN on AP-1-mediated uPA secretion and cell motility and the involvement of c-Src/epidermal growth factor receptor (EGFR) in these processes in breast cancer cells are not well defined. In this study we report that OPN induces alpha(v)beta(3) integrin-mediated c-Src kinase activity in both highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. Ligation of OPN with alpha(v)beta(3) integrin induces kinase activity and tyrosine phosphorylation of EGFR in MDA-MB-231 and wild type EGFR-transfected MCF-7 cells, and this was inhibited by the dominant negative form of c-Src (dn c-Src) indicating that c-Src kinase plays a crucial role in this process. OPN induces association between alpha(v)beta(3) integrin and EGFR on the cell membrane in a macromolecular form with c-Src. Furthermore, OPN induces alpha(v)beta(3) integrin/EGFR-mediated ERK1/2 phosphorylation and AP-1 activation. Moreover, dn c-Src also suppressed the OPN-induced phosphatidylinositol (PI) 3-kinase activity in these cells indicating that c-Src acts as master switch in regulating MEK/ERK1/2 and phosphatidylinositol 3-kinase/Akt signaling pathways. OPN-induced ERK phosphorylation, AP-1 activation, uPA secretion, and cell motility were suppressed when cells were transfected with dn c-Src or pretreated with alpha(v)beta(3) integrin antibody, c-Src kinase inhibitor (pp2), EGFR tyrosine kinase inhibitor (PD153035), and MEK-1 inhibitor (PD98059). To our knowledge, this is the first report that OPN induces alpha(v)beta(3) integrin-mediated AP-1 activity and uPA secretion by activating c-Src/EGFR/ERK signaling pathways and further demonstrates a functional molecular link between OPN-induced integrin/c-Src-dependent EGFR phosphorylation and ERK/AP-1-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   

9.
10.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

11.
12.
13.
Ovarian cancer (OC) is the leading cause of death in gynecologic diseases in which there is evidence for a complex chemokine network. Chemokines are a family of proteins that play an important role in tumor progression influencing cell proliferation, angiogenic/angiostatic processes, cell migration and metastasis, and, finally, regulating the immune cells recruitment into the tumor mass. We previously demonstrated that astrocytes and glioblastoma cells express both the chemokine receptor CXCR4 and its ligand stromal cell-derived factor-1 (SDF-1), and that SDF-1alpha treatment induced cell proliferation, supporting the hypothesis that chemokines may play an important role in tumor cells' growth in vitro. In the present study, we report that CXCR4 and SDF-1 are expressed in OC cell lines. We demonstrate that SDF-1alpha induces a dose-dependent proliferation in OC cells, by the specific interaction with CXCR4 and a biphasic activation of ERK1/2 and Akt kinases. Our results further indicate that CXCR4 activation induces EGF receptor (EGFR) phosphorylation that in turn was linked to the downstream intracellular kinases activation, ERK1/2 and Akt. In addition, we provide evidence for cytoplasmic tyrosine kinase (c-Src) involvement in the SDF-1/CXCR4-EGFR transactivation. These results suggest a possible important "cross-talk" between SDF-1/CXCR4 and EGFR intracellular pathways that may link signals of cell proliferation in ovarian cancer.  相似文献   

14.
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3β) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1α association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3β phosphorylation levels and glycogen content at 24 h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss.  相似文献   

15.
Phosphatidylinositol (PI) 3-kinase and its downstream effector Akt are thought to be signaling intermediates that link cell surface receptors to p70 S6 kinase. We examined the effect of a G(q)-coupled receptor on PI 3-kinase/Akt signaling and p70 S6 kinase activation using Rat-1 fibroblasts stably expressing the human alpha(1A)-adrenergic receptor. Treatment of the cells with phenylephrine, a specific alpha(1)-adrenergic receptor agonist, activated p70 S6 kinase but did not activate PI 3-kinase or any of the three known isoforms of Akt. Furthermore, phenylephrine blocked the insulin-like growth factor-I (IGF-I)-induced activation of PI 3-kinase and the phosphorylation and activation of Akt-1. The effect of phenylephrine was not confined to signaling pathways that include insulin receptor substrate-1, as the alpha(1)-adrenergic receptor agonist also inhibited the platelet-derived growth factor-induced activation of PI 3-kinase and Akt-1. Although increasing the intracellular Ca(2+) concentration with the ionophore A23187 inhibited the activation of Akt-1 by IGF-I, Ca(2+) does not appear to play a role in the phenylephrine-mediated inhibition of the PI 3-kinase/Akt pathway. The differential ability of phenylephrine and IGF-I to activate Akt-1 resulted in a differential ability to protect cells from UV-induced apoptosis. These results demonstrate that activation of p70 S6 kinase by the alpha(1A)-adrenergic receptor in Rat-1 fibroblasts occurs in the absence of PI 3-kinase/Akt signaling. Furthermore, this receptor negatively regulates the PI 3-kinase/Akt pathway, resulting in enhanced cell death following apoptotic insult.  相似文献   

16.
17.
18.
During a state of fasting, the blood glucose level is maintained by hepatic gluconeogenesis. SIRT1 is an important metabolic regulator during nutrient deprivation and the liver-specific knockdown of SIRT1 resulted in decreased glucose production. We hypothesize that SIRT1 is responsible for the upregulation of insulin-suppressed gluconeogenic genes through the deacetylation of FOXO1. Treatment of primary cultured hepatocytes with resveratrol increased insulin-repressed PEPCK and G6Pase mRNA levels, which depend on SIRT1 activity. We found that the resveratrol treatment resulted in a decrease in the phosphorylation of Akt and FOXO1, which are independent of SIRT1 action. Fluorescence microscopy revealed that resveratrol caused the nuclear localization of FOXO1. In the nucleus, FOXO1 is deacetylated by SIRT1, which might make it more accessible to the IRE of the PEPCK and G6Pase promoter, causing an increase in their gene expression. Our results indicate that resveratrol upregulates the expression of gluconeogenic genes by attenuating insulin signaling and by deacetylating FOXO1, which are SIRT1-independent in the cytosol and SIRT1-dependent in the nucleus, respectively.  相似文献   

19.
CXCL12/stromal cell-derived factor-1alpha (SDF-1alpha), a chemokine ligand for the G protein-coupled receptor CXCR4, plays an important role in the directed movement of cells. Many studies have documented the importance of CXCR4 in tumor progression and organ-specific metastasis. Recently, several studies have implicated a role for SDF-1alpha in head and neck squamous cell carcinoma (HNSCC) metastasis, but currently there is little information about how SDF-1alpha promotes HNSCC metastasis. In this report we show that the NF-kappaB signaling pathway is activated in response to SDF-1alpha in HNSCC while primary and immortalized keratinocytes show no SDF-1alpha-mediated NF-kappaB activity. We found that SDF-1alpha-mediated NF-kappaB signaling is independent of phosphoinositide 3-kinase/Akt and ERK/MAPK pathways. We observed that SDF-1alpha induces IkappaBalpha phosphorylation and degradation and the nuclear translocation of NF-kappaB in HNSCC cell lines, suggesting that SDF-1alpha activates the classical NF-kappaB signaling pathway. Contrary to previous reports, SDF-1alpha-induced NF-kappaB activation is not mediated by tumor necrosis factor alpha. Furthermore, blocking the NF-kappaB signaling pathway with an IKKbeta inhibitor significantly reduces SDF-1alpha-mediated HNSCC invasion. Taken together, our data suggest SDF-1alpha/CXCR4 may promote HNSCC invasion and metastasis by activating NF-kappaB and that targeting NF-kappaB may provide therapeutic opportunities in preventing HNSCC metastasis mediated by SDF-1alpha.  相似文献   

20.
Gliomas take a number of different genetic routes in the progression to glioblastoma multiforme, a highly invasive variant that is mostly unresponsive to current therapies. The alpha-chemokine stromal cell-derived factor (SDF)-1 alpha binds to the seven transmembrane G-protein-coupled CXCR-4 receptor and acts to modulate cell migration and proliferation by activating multiple signal transduction pathways. Leucine-rich repeats containing 4 (LRRC4), a putative glioma suppressive gene, inhibits glioblastoma cells tumorigenesis in vivo and cell proliferation and invasion in vitro. We also previously demonstrated that LRRC4 controlled glioblastoma cells proliferation by ERK/AKT/NF-kappa B signaling pathway. In the present study, we demonstrate that CXC chemokine receptor 4 (CXCR4) is expressed in human glioblastoma U251 cell line, and that SDF-1 alpha increases the proliferation, chemotaxis, and invasion in CXCR4+ glioblastoma U251 cells through the activation of ERK1/2 and Akt. The reintroduction of LRRC4 in U251 cells inhibits the expression of CXCR4 and SDF-1 alpha/CXCR4 axis-mediated downstream intracellular pathways such as ERK1/2 and Akt leading to proliferate, chemotactic and invasive effects. Furthermore, we provide evidence for proMMP-2 activation involvement in the SDF-1 alpha/CXCR4 axis-mediated signaling pathway. LRRC4 significantly inhibits proMMP-2 activation by SDF-1 alpha/CXCR4 axis-mediated ERK1/2 and Akt signaling pathway. Collectively, these results suggest a possible important "cross-talk" between LRRC4 and SDF-1 alpha/CXCR4 axis-mediated intracellular pathways that can link signals of cell proliferation, chemotaxis and invasion in glioblastoma, and may represent a new target for development of new therapeutic strategies in glioma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号