首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
c-Jun N-terminal kinases (JNKs) are a group of mitogen-activated protein kinase family members that are important in regulating cell growth, proliferation, and apoptosis. Activation of the JNK pathway has been implicated in the formation of several human tumors. We have previously demonstrated that a 55-kDa JNK isoform is constitutively activated in 86% of human brain tumors and more recently demonstrated that this isoform is either JNK2alpha2 or JNK2beta2. Importantly, we have also found that among the 10 known JNK isoforms, the JNK2 isoforms are unique in their ability to autophosphorylate in vitro and in vivo. This does not require the participation of any upstream kinases and also leads to substrate kinase activity in vitro and in vivo. To clarify the mechanism of JNK2alpha2 autoactivation, we have generated a series of chimeric cDNAs joining portions of JNK1alpha2, which does not have detectable autophosphorylation activity, with portions of JNK2alpha2, which has the strongest autophosphorylation activity. Through in vivo and in vitro kinase assays, we were able to define a domain ranging from amino acids 218 to 226 within JNK2alpha2 that is required for its autophosphorylation. Mutation of JNK2alpha2 to its counterpart of JNK1alpha2 in this region abrogated the autophosphorylation activity and c-Jun substrate kinase activity in vivo and in vitro. Notably, switching of JNK1alpha2 to JNK2alpha2 at this 9-amino acid site enabled JNK1alpha2 to gain the autophosphorylation activity in vivo and in vitro. We also found two other functional sites that participate in JNK2alpha2 activity. One site ranging from amino acids 363 to 382 of JNK2alpha2 is required for efficient c-Jun binding in vitro, and a site ranging from amino acids 383 to 424 enhances autophosphorylation intensity, although it is not required for triggering the autophosphorylation in vitro. These findings have uncovered the regions required for JNK2alpha2 autophosphorylation, and this information could be used as potential targets to block JNK2alpha2 activation.  相似文献   

2.
3.
Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase kinase kinase 3 (MEKK3) activates the c-Jun NH2-terminal kinase (JNK) pathway, although no substrates for MEKK3 have been identified. We have examined the regulation by MEKK3 of MAPK kinase 7 (MKK7) and MKK6, two novel MAPK kinases specific for JNK and p38, respectively. Coexpression of MKK7 with MEKK3 in COS-7 cells enhanced MKK7 autophosphorylation and its ability to activate recombinant JNK1 in vitro. MKK6 autophosphorylation and in vitro activation of p38alpha were also observed following coexpression of MKK6 with MEKK3. MEKK2, a closely related homologue of MEKK3, also activated MKK7 and MKK6 in COS-7 cells. Importantly, immunoprecipitates of either MEKK3 or MEKK2 directly activated recombinant MKK7 and MKK6 in vitro. These data identify MEKK3 as a MAPK kinase kinase specific for MKK7 and MKK6 in the JNK and p38 pathways. We have also examined whether MEKK3 or MEKK2 activates p38 in intact cells using MAPK-activated protein kinase-2 (MAPKAPK2) as an affinity ligand and substrate. Anisomycin, sorbitol, or the expression of MEKK3 in HEK293 cells enhanced MAPKAPK2 phosphorylation, whereas MEKK2 was less effective. Furthermore, MAPKAPK2 phosphorylation induced by MEKK3 or cellular stress was abolished by the p38 inhibitor SB-203580, suggesting that MEKK3 is coupled to p38 activation in intact cells.  相似文献   

4.
IGF-I stimulates cell growth through interaction of the IGF receptor with multiprotein signaling complexes. However, the mechanisms of IGF-I receptor-mediated signaling are not completely understood. We have previously shown that IGF-I-stimulated 3T3-L1 cell proliferation is dependent on Src activation of the ERK-1/2 MAPK pathway. We hypothesized that IGF-I activation of the MAPK pathway is mediated through integrin activation of Src-containing signaling complexes. The disintegrin echistatin decreased IGF-I phosphorylation of Src and MAPK, and blocking antibodies to (alpha)v and beta3 integrin subunits inhibited IGF-I activation of MAPK, suggesting that (alpha)v(beta)3 integrins mediate IGF-I mitogenic signaling. IGF-I increased ligand binding to (alpha)v(beta)3 as detected by immunofluorescent staining of ligand-induced binding site antibody and stimulated phosphorylation of the beta3 subunit, consistent with inside-out activation of (alpha)v(beta)3 integrins. IGF-I increased tyrosine phosphorylation of the focal adhesion kinase (FAK) Pyk2 (calcium-dependent proline-rich tyrosine kinase-2) to a much greater extent than FAK, and increased association of Src with Pyk2 but not FAK. The intracellular calcium chelator BAPTA prevented IGF-I phosphorylation of Pyk2, Src, and MAPK, suggesting that IGF-I activation of Pyk2 is calcium dependent. Transient transfection with a dominant-negative Pyk2, which lacks the autophosphorylation and Src binding site, decreased IGF-I activation of MAPK, but no inhibition was seen with transfected wild-type Pyk2. These results indicate that IGF-I signaling to MAPK is dependent on inside-out activation of (alpha)v(beta)3 integrins and integrin-facilitated multiprotein complex formation involving Pyk2 activation and association with Src.  相似文献   

5.
The intracellular protozoan Toxoplasma gondii triggers rapid MAPK activation in mouse macrophages (Mphi). We used synthetic inhibitors and dominant-negative Mphi mutants to demonstrate that T. gondii triggers IL-12 production in dependence upon p38 MAPK. Chemical inhibition of stress-activated protein kinase/JNK showed that this MAPK was also required for parasite-triggered IL-12 production. Examination of upstream MAPK kinases (MKK) 3, 4, and 6 that function as p38 MAPK activating kinases revealed that parasite infection activates only MKK3. Nevertheless, in MKK3(-/-) Mphi, p38 MAPK activation was near normal and IL-12 production was unaffected. Recently, MKK-independent p38alpha MAPK activation via autophosphorylation was described. Autophosphorylation depends upon p38alpha MAPK association with adaptor protein, TGF-beta-activated protein kinase 1-binding protein-1. We observed TGF-beta-activated protein kinase 1-binding protein-1-p38alpha MAPK association that closely paralleled p38 MAPK phosphorylation during Toxoplasma infection of Mphi. Furthermore, a synthetic p38 catalytic-site inhibitor blocked tachyzoite-induced p38alpha MAPK phosphorylation. These data are the first to demonstrate p38 MAPK autophosphorylation triggered by intracellular infection.  相似文献   

6.
Exposure of A431 squamous and MDA-MB-231 mammary carcinoma cells to ionizing radiation has been associated with short transient increases in epidermal growth factor receptor (EGFR) tyrosine phosphorylation and activation of the mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK) pathways. Irradiation (2 Gy) of A431 and MDA-MB-231 cells caused immediate primary activations (0-10 min) of the EGFR and the MAPK and JNK pathways, which were surprisingly followed by later prolonged secondary activations (90-240 min). Primary and secondary activation of the EGFR was abolished by molecular inhibition of EGFR function. The primary and secondary activation of the MAPK pathway was abolished by molecular inhibition of either EGFR or Ras function. In contrast, molecular inhibition of EGFR function abolished the secondary but not the primary activation of the JNK pathway. Inhibition of tumor necrosis factor alpha receptor function by use of neutralizing monoclonal antibodies blunted primary activation of the JNK pathway. Addition of a neutralizing monoclonal antibody versus transforming growth factor alpha (TGFalpha) had no effect on the primary activation of either the EGFR or the MAPK and JNK pathways after irradiation but abolished the secondary activation of EGFR, MAPK, and JNK. Irradiation of cells increased pro-TGFalpha cleavage 120-180 min after exposure. In agreement with radiation-induced release of a soluble factor, activation of the EGFR and the MAPK and JNK pathways could be induced in nonirradiated cells by the transfer of media from irradiated cells 120 min after irradiation. The ability of the transferred media to cause MAPK and JNK activation was blocked when media were incubated with a neutralizing antibody to TGFalpha. Thus radiation causes primary and secondary activation of the EGFR and the MAPK and JNK pathways in autocrine-regulated carcinoma cells. Secondary activation of the EGFR and the MAPK and JNK pathways is dependent on radiation-induced cleavage and autocrine action of TGFalpha. Neutralization of TGFalpha function by an anti-TGFalpha antibody or inhibition of MAPK function by MEK1/2 inhibitors (PD98059 and U0126) radiosensitized A431 and MDA-MB-231 cells after irradiation in apoptosis, 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), and clonogenic assays. These data demonstrate that disruption of the TGFalpha-EGFR-MAPK signaling module represents a strategy to decrease carcinoma cell growth and survival after irradiation.  相似文献   

7.
Activation of alpha1B-adrenergic receptors ((alpha1B)AR) by phenylephrine (PE) induces scattering of HepG2 cells stably transfected with the (alpha1B)AR (TFG2 cells). Scattering was also observed after stimulation of TFG2 cells with phorbol myristate acetate (PMA) but not with hepatocyte growth factor/scatter factor, epidermal growth factor, or insulin. PMA but not phenylephrine rapidly activated PKCalpha in TFG2 cells, and the highly selective PKC inhibitor bisindolylmaleimide (GFX) completely abolished PMA-induced but not PE-induced scattering. PE rapidly activated p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK, c-Jun N-terminal kinase (JNK), and AP1 (c-fos/c-jun). Selective blockade of p42/44 MAPK activity by PD98059 or by transfection of a MEK1 dominant negative adenovirus significantly inhibited the PE-induced scattering of TFG2 cells. Selective inhibition of p38 MAPK by SB203850 or SB202190 also blocked PE-induced scattering, whereas treatment of TFG2 cells with the PI3 kinase inhibitors LY294002 or wortmannin did not inhibit PE-induced scattering. Blocking JNK activation with a dominant negative mutant of JNK or blocking AP1 activation with a dominant negative mutant of c-jun (TAM67) significantly inhibited PE-induced cell scattering. These data indicate that PE-induced scattering of TFG2 cells is mediated by complex mechanisms, including activation of p42/44 MAPK, p38 MAPK, and JNK. Cell spreading has been reported to play important roles in wound repair, tumor invasion, and metastasis. Therefore, catecholamines acting via the (alpha1)AR may modulate these physiological and pathological processes.  相似文献   

8.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

9.
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.  相似文献   

10.
Protein kinase PKR is activated by double-stranded RNA (dsRNA) and phosphorylates translation initiation factor 2alpha to inhibit protein synthesis in virus-infected mammalian cells. PKR contains two dsRNA binding motifs (DRBMs I and II) required for activation by dsRNA. There is strong evidence that PKR activation requires dimerization, but the role of dsRNA in dimer formation is controversial. By making alanine substitutions predicted to remove increasing numbers of side chain contacts between the DRBMs and dsRNA, we found that dimerization of full-length PKR in yeast was impaired by the minimal combinations of mutations required to impair dsRNA binding in vitro. Mutation of Ala-67 to Glu in DRBM-I, reported to abolish dimerization without affecting dsRNA binding, destroyed both activities in our assays. By contrast, deletion of a second dimerization region that overlaps the kinase domain had no effect on PKR dimerization in yeast. Human PKR contains at least 15 autophosphorylation sites, but only Thr-446 and Thr-451 in the activation loop were found here to be critical for kinase activity in yeast. Using an antibody specific for phosphorylated Thr-451, we showed that Thr-451 phosphorylation is stimulated by dsRNA binding. Our results provide strong evidence that dsRNA binding is required for dimerization of full-length PKR molecules in vivo, leading to autophosphorylation in the activation loop and stimulation of the eIF2alpha kinase function of PKR.  相似文献   

11.
A differentiated liver cell (HepG2), which exhibits a dose-dependent growth-stimulatory and growth-inhibitory response to heparin-binding fibroblast growth factor type 1 (FGF-1), displays high- and low-affinity receptor phenotypes and expresses specific combinatorial splice variants alpha 1, beta 1, and alpha 2 of the FGF receptor (FGF-R) gene (flg). The extracellular domains of the alpha and beta variants consist of three and two immunoglobulin loops, respectively, while the intracellular variants consist of a tyrosine kinase (type 1) isoform and a kinase-defective (type 2) isoform. The type 2 isoform is also devoid of the two major intracellular tyrosine autophosphorylation sites (Tyr-653 and Tyr-766) in the type 1 kinase. An analysis of ligand affinity, dimerization, autophosphorylation, and interaction with src homology region 2 (SH2) substrates of the recombinant alpha 1, beta 1, and alpha 2 isoforms was carried out to determine whether dimerization of the combinatorial splice variants might explain the dose-dependent opposite mitogenic effects of FGF. Scatchard analysis indicated that the alpha and beta isoforms exhibit low and high affinity for ligand, respectively. The three combinatorial splice variants dimerized in all combinations. FGF enhanced dimerization and kinase activity, as assessed by receptor autophosphorylation. Phosphopeptide analysis revealed that phosphorylation of Tyr-653 was reduced relative to phosphorylation of Tyr-766 in the type 1 kinase component of heterodimers of the type 1 and type 2 isoforms. The SH2 domain substrate, phospholipase C gamma 1 (PLC gamma 1), associated with the phosphorylated type 1-type 2 heterodimers but was phosphorylated only in preparations containing the type 1 kinase homodimer. The results suggest that phosphorylation of Tyr-653 within the kinase catalytic domain, but not Tyr-766 in the COOH-terminal domain, may be stringently dependent on a trans intermolecular mechanism within FGF-R kinase homodimers. Although phosphotyrosine 766 is sufficient for interaction of PLC gamma 1 and other SH2 substrates with the FGF-R kinase, phosphorylation and presumably activation of substrates require the kinase homodimer and phosphorylation of Tyr-653. We propose that complexes of phosphotyrosine 766 kinase monomers and SH2 domain signal transducers may constitute unactivated presignal complexes whose active or inactive fate depends on homodimerization with a kinase or heterodimerization with a kinase-defective monomer, respectively. The results suggest a mechanism for control of signal transduction by different concentrations of ligand through heterodimerization of combinatorial splice variants from the same receptor gene.  相似文献   

12.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and -2, respectively) play a critical role in regulating cell division and have been implicated in cancer. In addition to activation by MAPK/ERK kinases 1 and 2 (MEK1 and -2, respectively), certain mutants of ERK2 can be activated by autophosphorylation. To identify the mechanism of autoactivation, we have performed a series of molecular dynamics simulations of ERK1 and -2 in various stages of activation as well as the constitutively active Q103A, I84A, L73P, and R65S ERK2 mutants. Our simulations indicate the importance of domain closure for autoactivation and activity regulation, with that event occurring prior to folding of the activation lip and of loop L16. Results indicate that the second phosphorylation event, that of T183, disrupts hydrogen bonding involving D334, thereby allowing the kinase to lock into the active conformation. On the basis of the simulations, three predictions were made. G83A was suggested to impede activation; K162M was suggested to perturb the interface between the N- and C-domains leading to activation, and Q64C was hypothesized to stop folding of loop L16, thereby perturbing the homodimerization interface. Functional analysis of the mutants validated the predictions concerning the G83A and Q64C mutants. The K162M mutant did not autoactivate as predicted, however, which may be due to the location of the residue on the protein surface near the ED substrate docking domain.  相似文献   

13.
Mitogen-activated protein kinase (MAPK) cascades are central components of the intracellular signaling networks used by eukaryotic cells to respond to a wide spectrum of extracellular stimuli. An MAPK is activated by an MAPK kinase, which in turn is activated by an MAPK kinase kinase (MAP3K). However, little is known about the molecular aspects of the regulation and activation of large numbers of MAP3Ks that are crucial in relaying upstream receptor-mediated signals through the MAPK cascades to induce various physiological responses. In this study, we identified a novel MEKK2-interacting protein, Mip1, that regulates MEKK2 dimerization and activation by forming a complex with inactive and nonphosphorylated MEKK2. In particular, Mip1 prevented MEKK2 activation by blocking MEKK2 dimer formation, which in turn blocked JNKK2, c-Jun N-terminal kinase 1 (JNK1), extracellular signal-regulated kinase 5, and AP-1 reporter gene activation by MEKK2. Furthermore, we found that the endogenous Mip1-MEKK2 complex was dissociated transiently following epidermal growth factor stimulation. In contrast, the knockdown of Mip1 expression by siRNA augmented the MEKK2-mediated JNK and AP-1 reporter activation. Together, our data suggest a novel model for MEKK2 regulation and activation.  相似文献   

14.
The mitogen-activated protein kinase (MAPK) module, composed of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK), is a cellular signaling device that is conserved throughout the eukaryotic world. In mammalian cells, various extracellular stresses activate two major subfamilies of MAPKs, namely, the Jun N-terminal kinases and the p38/stress-activated MAPK (SAPK). MTK1 (also called MEKK4) is a stress-responsive MAPKKK that is bound to and activated by the stress-inducible GADD45 family of proteins (GADD45alpha/beta/gamma). Here, we dissected the molecular mechanism of MTK1 activation by GADD45 proteins. The MTK1 N terminus bound to its C-terminal segment, thereby inhibiting the C-terminal kinase domain. This N-C interaction was disrupted by the binding of GADD45 to the MTK1 N-terminal GADD45-binding site. GADD45 binding also induced MTK1 dimerization via a dimerization domain containing a coiled-coil motif, which is essential for the trans autophosphorylation of MTK1 at Thr-1493 in the kinase activation loop. An MTK1 alanine substitution mutant at Thr-1493 has a severely reduced activity. Thus, we conclude that GADD45 binding induces MTK1 N-C dissociation, dimerization, and autophosphorylation at Thr-1493, leading to the activation of the kinase catalytic domain. Constitutively active MTK1 mutants induced the same events, but in the absence of GADD45.  相似文献   

15.
Bauer BN  Rafie-Kolpin M  Lu L  Han A  Chen JJ 《Biochemistry》2001,40(38):11543-11551
In heme-deficient reticulocytes, protein synthesis is inhibited due to the activation of heme-regulated eIF2alpha kinase (HRI). Activation of HRI is accompanied by its phosphorylation. We have investigated the role of autophosphorylation in the formation of active and stable HRI. Two autophosphorylated species of recombinant HRI expressed in Escherichia coli were resolved by SDS-PAGE. Both species of HRI were multiply autophosphorylated on serine, threonine, and to a lesser degree also tyrosine residues. Species II HRI exhibited a much higher extent of autophosphorylation and thus migrates slower in SDS-PAGE than species I HRI. Similarly, HRI naturally present in reticulocytes also exhibited these species with different degrees of phosphorylation. Importantly, in heme-deficient intact reticulocytes, inactive species I HRI was converted completely into species II. We further separated and characterized these two species biochemically. We found that species I was inactive and had a tendency to aggregate while the more extensively autophosphorylated species II was an active heme-regulated eIF2alpha kinase and stable homodimer. Our results strongly suggest that autophosphorylation regulates HRI in a two-stage mechanism. In the first stage, autophosphorylation of newly synthesized HRI stabilizes species I HRI against aggregation. Although species I is an active autokinase, it is still without eIF2alpha kinase activity. Additional multiple autophosphorylation in the second stage is required for the formation of stable dimeric HRI (species II) with eIF2alpha kinase activity that is regulated by heme.  相似文献   

16.
17.
Autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase converts it from a Ca2(+)-dependent to a Ca2(+)-independent or autonomous kinase, a process that may underlie some long-term enhancement of transient Ca2+ signals. We demonstrate that the neuronal alpha subunit clone expressed in COS-7 cells (alpha-CaM kinase) is sufficient to encode the regulatory phenomena characteristic of the multisubunit kinase isolated from brain. Activity of alpha-CaM kinase is highly dependent on Ca2+/calmodulin. It is converted by autophosphorylation to an enzyme capable of Ca2(+)-independent (autonomous) substrate phosphorylation and autophosphorylation. Using site-directed mutagenesis, we separately eliminate five putative autophosphorylation sites within the regulatory domain and directly examine their individual roles. Ca2+/calmodulin-dependent kinase activity is fully retained by each mutant, but Thr286 is unique among the sites in being indispensable for generation of an autonomous kinase.  相似文献   

18.
Mitogen-activated protein kinases (MAPKs) are activated through cascades or modules consisting of a MAPK, a MAPK kinase (MAPKK), and a MAPKK kinase (MAPKKK). Investigating the molecular basis of activation of the c-Jun N-terminal kinase (JNK) subgroup of MAPK by the MAPKKK MEKK2, we found that strong and specific JNK1 activation by MEKK2 was mediated by the MAPKK JNK kinase 2 (JNKK2) rather than by JNKK1 through formation of a tripartite complex consisting of MEKK2, JNKK2, and JNK1. No scaffold protein was required for the MEKK2-JNKK2-JNK1 tripartite-complex formation. Expression of JNK1, JNKK2, and MEKK2 significantly augmented the coprecipitation of, respectively, MEKK2-JNKK2, MEKK2-JNK1, and JNKK2-JNK1, indicating that the interaction of MEKK2, JNKK2, and JNK1 is synergistic. Finally, the JNK1 was activated more efficiently in the MEKK2-JNKK2-JNK1 complex than was the JNK1 excluded from the complex. Thus, formation of a signaling complex through synergistic interaction of a MAPKKK, a MAPKK, and a MAPK molecule like MEKK2-JNKK2-JNK1 is likely to be responsible for the efficient, specific flow of information via MAPK cascades.  相似文献   

19.
It has been proposed that JNK-interacting proteins (JIP) facilitate mixed lineage kinase-dependent signal transduction to JNK by aggregating the three components of a JNK module. A new model for the assembly and regulation of these modules is proposed based on several observations. First, artificially induced dimerization of dual leucine zipper-bearing kinase (DLK) confirmed that DLK dimerization is sufficient to induce DLK activation. Secondly, under basal conditions, DLK associated with JIP is held in a monomeric, unphosphorylated and catalytically inactive state. Thirdly, JNK recruitment to JIP coincided with significantly decreased affinity of JIP and DLK. JNK promoted the dimerization, phosphorylation and activation of JIP-associated DLK. Similarly, treatment of cells with okadaic acid inhibited DLK association with JIP and resulted in DLK dimerization in the presence of JIP. In summary, JIP maintains DLK in a monomeric, unphosphorylated, inactive state. Upon stimulation, JNK-JIP binding affinity increases while JIP-DLK interaction affinity is attenuated. Dissociation of DLK from JIP results in subsequent DLK dimerization, autophosphorylation and module activation. Evidence is provided that this model holds for other MLK-dependent JNK modules.  相似文献   

20.
Phosphatidic acid (PtdOH) has been shown not only to stimulate autophosphorylation and autoactivation of phosphorylase kinase of rabbit skeletal muscle but also to decrease the apparent Ka for Ca2+ on autophosphorylation sharply [Negami et al. (1985) Biochem. Biophys. Res. Commun. 131, 712-719]. In this study we investigated the interaction between PtdOH and other phospholipids on autophosphorylation and autoactivation of this enzyme. Acidic phospholipids, such as phosphatidylserine (PtdSer), phosphatidylinositol (PtdIns) and PtdOH, stimulated this reaction about 2-4-fold, and the approximate Ka values of this reaction were 10 micrograms/ml, 6.3 micrograms/ml and 30 micrograms/ml respectively. The molar ratio of PtdIns and PtdSer with maximal effect on autophosphorylation was about 1:1. Under these conditions PtdOH stimulated the initial velocity of autophosphorylation about 5.2-fold. When fully autophosphorylated, about 12-13 mol phosphate per tetramer (alpha beta gamma delta) were incorporated in the presence of mixed acidic phospholipids (PtdOH:PtdIns:PtdSer = 2:1:1), which was about twice as much as values observed without effectors. In the presence of mixed acidic phospholipids there was a concomitant enhancement of kinase activity, about 30-40-fold at pH 6.8 and 2.5-3-fold at pH 8.2. Mixed acidic phospholipids sharply decreased an apparent Ka for Ca2+ from 4 X 10(-5) M to 8 X 10(-7) M. With mixed acidic phospholipids as effectors this autophosphorylation occurred through an intramolecular mechanism. Based on these results, autophosphorylation and autoactivation of phosphorylase kinase in the presence of acidic phospholipids may account for an important regulatory mechanism of glycogenolysis in muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号