首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

2.
In contrast to top-down trophic cascades, few reviews have appeared of bottom-up trophic cascades. We review the recent development of research on bottom-up cascades in terrestrial food webs, focusing on tritrophic systems consisting of plants, herbivorous insects, and natural enemies, and attempt to integrate bottom-up cascade and material transfer among trophic levels. Bottom-up cascades are frequently reported in various tritrophic systems, and are important to determine community structure, population dynamics, and individual performance of higher trophic levels. In addition, we highlight several features of bottom-up cascades. Accumulation or dilution of plant nutritional and defensive materials by herbivorous insects provides a mechanistic base for several bottom-up cascades. Such a stoichiometric approach has the potential to improve our understanding of bottom-up cascading effects in terrestrial food webs. We suggest a future direction for research by integration of bottom-up cascades and material transfer among trophic levels.  相似文献   

3.
Terrestrial trophic cascades: how much do they trickle?   总被引:1,自引:0,他引:1  
Although more consensus is now emerging on the magnitude and frequency of cascading trophic effects in aquatic communities, the debate over their terrestrial counterparts continues. We used meta-analysis to analyze field experiments on trophic cascades in terrestrial arthropod-dominated food webs to evaluate the overall magnitude of trophic cascades and conditions affecting their occurrence and strength. We found extensive support for the presence of trophic cascades in terrestrial communities. In the majority of experiments, predator removal led to increased densities of herbivorous insects and higher levels of plant damage. Cascades in which removing predators led to decreased herbivory also were detected but were less frequent and weaker, suggesting a predominantly three-trophic-level behavior of arthropod-dominated terrestrial food webs. Despite the clear evidence that cascades often decreased plant damage, residual effects of predation produced either no or only minimal changes in overall plant biomass. Agricultural systems and natural communities exhibited similarly strong effects of predation on herbivore abundance. However, resulting effects on plant damage and community-wide effects of trophic cascades on plant biomass usually were highly variable, and only in the managed agricultural systems did predators occasionally have strong indirect effects on plant biomass. Our meta-analysis suggests that the effects of trophic cascades on the biomass of primary producers are weaker in terrestrial than aquatic food webs.  相似文献   

4.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

5.
Parasites have the capacity to regulate host populations and may be important determinants of community structure, yet they are usually neglected in studies of food webs. Parasites can provide much of the information on host biology, such as diet and migration, that is necessary to construct accurate webs. Because many parasites have complex life cycles that involve several different hosts, and often depend on trophic interactions for transmission, parasites provide complementary views of web structure and dynamics. Incorporation of parasites in food webs can substantially after baste web properties, Including connectance, chain length and proportions of top and basal species, and can allow the testing of specific hypotheses related to food-web dynamics.  相似文献   

6.
The Phytomyxea (“plasmodiophorids”) including both Plasmodiophorida and Phagomyxida is a monophyletic group of Eukaryotes composed of obligate biotrophic parasites of green plants, brown algae, diatoms and stramenopiles commonly found in many freshwater, soil and marine environments. However, most research on Phytomyxea has been restricted to plant pathogenic species with agricultural importance, thereby missing the huge ecological potential of this enigmatic group of parasites. Members of the Phytomyxea can induce changes in biomass in their hosts (e.g. hypertrophies of the host tissue) under suitable environmental conditions. Upon infection they alter the metabolism of their hosts, consequently changing the metabolic status of their host. This results in an altered chemical composition of the host tissue, which impacts the diversity of species which feed on the tissues of the infected host and on the zoospores produced by the parasites. Furthermore, significant amounts of nutrients derived from the hosts, both primary producers (plants and algae) and primary consumers (litter decomposers and plant parasites [Oomycetes]), can enter the food web at different trophic levels in form of zoospores and resting spores. Large numbers of zoospores and resting spores are produced which can be eaten by secondary and tertiary consumers, such as grazing zooplankton and metazoan filter-feeders. Therefore, these microbes can act as energy-rich nutrient resources which may significantly alter the trophic relationships in fresh water, soil and marine habitats. Based on the presented data, Phytomyxea can significantly contribute to the complexity and energy transfer within food webs.  相似文献   

7.
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta‐analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure.  相似文献   

8.
Apex predators and plant resources are both critical for maintaining diversity in biotic communities, but the indirect (‘cascading’) effects of top‐down and bottom‐up forces on diversity at different trophic levels are not well resolved in terrestrial systems. Manipulations of predators or resources can cause direct changes of diversity at one trophic level, which in turn can affect diversity at other trophic levels. The indirect diversity effects of resource and consumer variation should be strongest in aquatic systems, moderate in terrestrial systems, and weakest in decomposer food webs. We measured effects of top predators and plant resources on the diversity of endophytic animals in an understorey shrub Piper cenocladum (Piperaceae). Predators and resource availability had significant direct and indirect effects on the diversity of the endophytic animal community, but the effects were not interactive, nor were they consistent between living vs. detrital food webs. The addition of fourth trophic level beetle predators increased diversity of consumers supported by living plant tissue, whereas balanced plant resources (light and nutrients) increased the diversity of primary through tertiary consumers in the detrital resources food web. These results support the hypotheses that top‐down and bottom‐up diversity cascades occur in terrestrial systems, and that diversity is affected by different factors in living vs. detrital food webs.  相似文献   

9.
Community structure is controlled, among multiple factors, by competition and predation. Using the R* rule and graphical analysis, we analyse here the feasibility, stability and assembly rules of resource-based food webs with up to three trophic levels. In particular, we show that (1) the stability of a food web with two plants and two generalist herbivores does not require that plants' resource exploitation abilities trade-off with resistance to the two herbivores, and (2) food webs with two plants and either one generalist herbivore and a carnivore or two generalist herbivores and two generalist carnivores are not feasible because of cascade competition between top consumers. The relative strength of species interactions and the relative impacts of plants and herbivores on factors which control their growth also play a critical role. We discuss how community structure constrains assembly rules and yields cascades of extinctions in food webs.  相似文献   

10.

Background

Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.

Methodology/Principal Findings

We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.

Conclusions/Significance

The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant – nematode interactions.  相似文献   

11.
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon‐dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso‐ and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14–16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food‐web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co‐occurring plants, which was particularly evident for Lasius, an aphid‐associated ant genus. Trophic levels and trophic‐chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso‐ and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.  相似文献   

12.
Mike S. Fowler 《Oikos》2013,122(12):1730-1738
Forcibly removing species from ecosystems has important consequences for the remaining assemblage, leading to changes in community structure, ecosystem functioning and secondary (cascading) extinctions. One key question that has arisen from single‐ and multi‐trophic ecosystem models is whether the secondary extinctions that occur within competitive communities (guilds) are also important in multi‐trophic ecosystems? The loss of consumer–resource links obviously causes secondary extinction of specialist consumers (topological extinctions), but the importance of secondary extinctions in multi‐trophic food webs driven by direct competitive exclusion remains unknown. Here I disentangle the effects of extinctions driven by basal competitive exclusion from those caused by trophic interactions in a multi‐trophic ecosystem (basal producers, intermediate and top consumers). I compared food webs where basal species either show diffuse (all species compete with each other identically: no within guild extinctions following primary extinction) or asymmetric competition (unequal interspecific competition: within guild extinctions are possible). Basal competitive exclusion drives extra extinction cascades across all trophic levels, with the effect amplified in larger ecosystems, though varying connectance has little impact on results. Secondary extinction patterns based on the relative abundance of the species lost in the primary extinction differ qualitatively between diffuse and asymmetric competition. Removing asymmetric basal species with low (high) abundance triggers fewer (more) secondary extinctions throughout the whole food web than removing diffuse basal species. Rare asymmetric competitors experience less pressure from consumers compared to rare diffuse competitors. Simulations revealed that diffuse basal species are never involved in extinction cascades, regardless of the trophic level of a primary extinction, while asymmetric competitors were. This work highlights important qualitative differences in extinction patterns that arise when different assumptions are made about the form of direct competition in multi‐trophic food webs.  相似文献   

13.
Specialized trophic interactions in plant–herbivore–parasitoid food webs can spur “bottom–up” diversification if speciation in plants leads to host‐shift driven divergence in insect herbivores, and if the effect then cascades up to the third trophic level. Conversely, parasitoids that search for victims on certain plant taxa may trigger “top–down” diversification by pushing herbivores into “enemy‐free space” on novel hosts. We used phylogenetic regression methods to compare the relative importance of ecology versus phylogeny on associations between Heterarthrinae leafmining sawflies and their parasitoids. We found that: (1) the origin of leafmining led to escape from most parasitoids attacking external‐feeding sawflies; (2) the current enemies mainly consist of generalists that are shared with other leafmining taxa, and of more specialized lineages that may have diversified by shifting among heterarthrines; and (3) parasitoid–leafminer associations are influenced more by the phylogeny of the miners’ host plants than by relationships among miner species. Our results suggest that vertical diversifying forces have a significant—but not ubiquitous—role in speciation: many of the parasitoids have remained polyphagous despite niche diversification in the miners, and heterarthrine host shifts also seem to be strongly affected by host availability.  相似文献   

14.
Theory predicts that habitat fragmentation, including reduced area and connectivity of suitable habitat, changes multitrophic interactions. Species at the bottom of trophic cascades (host plants) are expected to be less negatively affected than higher trophic levels, such as herbivores and their parasitoids or predators. Here we test this hypothesis regarding the effects of habitat area and connectivity in a trophic system with three levels: first with the population size of the larval food plant Hippocrepis comosa, next with the population density of the monophagous butterfly species Polyommatus coridon and finally with its larval parasitism rate. Our results show no evidence for negative effects of habitat fragmentation on the food plant or on parasitism rates, but population density of adult P. coridon was reduced with decreasing connectivity. We conclude that the highly specialized butterfly species is more affected by habitat fragmentation than its larval food plant because of its higher trophic position. However, the butterfly host species was also more affected than its parasitoids, presumably because of lower resource specialization of local parasitoids which also frequently occur in alternative hosts. Therefore, conservation efforts should focus first on the most specialized species of interaction networks and second on higher trophic levels.  相似文献   

15.
The directionality of asymmetric interactions between predators (definitive hosts) and prey (intermediate hosts) should impact trophic transmission in parasites. This study tests the prediction that trophically transmitted parasites are funneled towards asymmetric predator–prey interactions where intermediate hosts have few predators and definitive hosts feed upon many prey (‘downward asymmetry’). The distribution of trophically transmitted parasites was examined in four published food webs in relation to mismatch asymmetry of predator–prey interactions. We found that trophically transmitted parasites exploit downwardly asymmetric interactions in a nonrandom manner, and particular predator–prey pairs contain more trophically transmitted parasites than would be expected by random chance alone. These findings suggest that food web topology has great bearing on the ecology of trophically transmitted parasites, and that consideration of parasite life cycles in the context of food web organization can provide insights into the forces affecting the evolution of trophic transmission.  相似文献   

16.
Few studies have examined how foraging niche shift of a predator over time cascade down to local prey communities. Here we examine patterns of temporal foraging niche shifts of a generalist predator (yellow catfish, Pelteobagrus fulvidraco) and the abundance of prey communities in a subtropical lake. We predicted that the nature of these interactions would have implications for patterns in diet shifts and growth of the predator. Our results show significant decreases in planktivory and benthivory from late spring to summer and autumn, whereas piscivory increased significantly from mid-summer until late autumn and also increased steadily with predator body length. The temporal dynamics in predator/prey ratios indicate that the predation pressure on zooplankton and zoobenthos decreased when the predation pressure on the prey fish and shrimps was high. Yellow catfish adjusted their foraging strategies to temporal changes in food availability, which is in agreement with optimal foraging theory. Meanwhile the decrease in planktivory and benthivory of yellow catfish enabled primary consumers, such as zooplankton and benthic invertebrates, to develop under low grazing pressure via trophic cascading effects in the local food web. Thus, yellow catfish shifts its foraging niche to intermediate consumers in the food web to benefit the energetic demand on growth and reproduction during summer, which in turn indirectly facilitate the primary consumers. In complex food webs, trophic interactions are usually expected to reduce the strength and penetrance of trophic cascades. However, our study demonstrates strong associations between foraging niche of piscivorous fish and abundance of prey. This relationship appeared to be an important factor in producing top-down effects on both benthic and planktonic food webs.  相似文献   

17.
One of the most important issues in ecology is understanding the causal mechanisms that shape the structure of ecological communities through trophic interactions. The focus on direct, trophic interactions in much of the research to date means that the potential significance of non-trophic, indirect, and facilitative interactions has been largely ignored in traditional food webs. There is a growing appreciation of the community consequences of such non-trophic effects, and the need to start including them in food web research. This review highlights how non-trophic, indirect, and facilitative interactions play an important role in organizing the structure of plant-centered arthropod communities. I argue that herbivore-induced plant responses, insect ecosystem engineers, and mutualisms involving ant–honeydew-producing insects all generate interaction linkages among insect herbivores, thereby producing complex indirect interaction webs on terrestrial plants. These interactions are all very common and widespread on terrestrial plants, in fact they are almost ubiquitous, but these interactions have rarely been included in traditional food webs. Finally, I will emphasize that because the important community consequences of these non-trophic and indirect interactions have been largely unexplored, it is critical that indirect interaction webs should be the focus of future research.  相似文献   

18.
Synthesis Metacommunity theory aims to elucidate the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity research has focused largely on assemblages of competing organisms within a single trophic level. Here, we test the ability of metacommunity models to predict the network structure of the aquatic food web found in the leaves of the northern pitcher plant Sarracenia purpurea. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions play an important role in structuring Sarracenia food webs. Our approach can be applied to any well‐resolved food web for which data are available from multiple locations. The metacommunity framework explores the relative influence of local and regional‐scale processes in generating diversity patterns across the landscape. Metacommunity models and empirical studies have focused mostly on assemblages of competing organisms within a single trophic level. Studies of multi‐trophic metacommunities are predominantly restricted to simplified trophic motifs and rarely consider entire food webs. We tested the ability of the patch‐dynamics, species‐sorting, mass‐effects, and neutral metacommunity models, as well as three hybrid models, to reproduce empirical patterns of food web structure and composition in the complex aquatic food web found in the northern pitcher plant Sarracenia purpurea. We used empirical data to determine regional species pools and estimate dispersal probabilities, simulated local food‐web dynamics, dispersed species from regional pools into local food webs at rates based on the assumptions of each metacommunity model, and tested their relative fits to empirical data on food‐web structure. The species‐sorting and patch‐dynamics models most accurately reproduced nine food web properties, suggesting that local‐scale interactions were important in structuring Sarracenia food webs. However, differences in dispersal abilities were also important in models that accurately reproduced empirical food web properties. Although the models were tested using pitcher‐plant food webs, the approach we have developed can be applied to any well‐resolved food web for which data are available from multiple locations.  相似文献   

19.
Food web topologies depict the community structure as distributions of feeding interactions across populations. Although the soil ecosystem provides important functions for aboveground ecosystems, data on complex soil food webs is notoriously scarce, most likely due to the difficulty of sampling and characterizing the system. To fill this gap we assembled the complex food webs of 48 forest soil communities. The food webs comprise 89 to 168 taxa and 729 to 3344 feeding interactions. The feeding links were established by combining several molecular methods (stable isotope, fatty acid and molecular gut content analyses) with feeding trials and literature data. First, we addressed whether soil food webs (n = 48) differ significantly from those of other ecosystem types (aquatic and terrestrial aboveground, n = 77) by comparing 22 food web parameters. We found that our soil food webs are characterized by many omnivorous and cannibalistic species, more trophic chains and intraguild‐predation motifs than other food webs and high average and maximum trophic levels. Despite this, we also found that soil food webs have a similar connectance as other ecosystems, but interestingly a higher link density and clustering coefficient. These differences in network structure to other ecosystem types may be a result of ecosystem specific constraints on hunting and feeding characteristics of the species that emerge as network parameters at the food‐web level. In a second analysis of land‐use effects, we found significant but only small differences of soil food web structure between different beech and coniferous forest types, which may be explained by generally strong selection effects of the soil that are independent of human land use. Overall, our study has unravelled some systematic structures of soil food‐webs, which extends our mechanistic understanding how environmental characteristics of the soil ecosystem determine patterns at the community level.  相似文献   

20.
Recent reviews on trait-mediated interactions in food webs suggest that trait-mediated effects are as important in triggering top–down trophic cascades as are density-mediated effects. Trait-mediated interactions between predator and prey result from non-consumptive predator effects changing behavioural and/or life history traits of prey. However, in biological control the occurrence of trait-mediated interactions between predators, prey and plants has been largely ignored. Here, we show that non-consumptive predator effects on prey cascade down to the plant in an agro-ecological food chain. The study system consisted of the predatory mites P. persimilis and N. californicus , the herbivorous non-target prey western flower thrips F. occidentalis and the host plant bean. Irrespective of predator species and risk posed to prey, the presence of predator eggs led to increased ambulation, increased mortality and decreased oviposition of thrips. Furthermore, the presence of predator eggs reduced leaf damage caused by thrips. To our knowledge this is the first experimental evidence suggesting a positive trophic cascade triggered by non-consumptive predator effects on non-target prey in an augmentative biological control system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号