首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations compared to most vetches and clovers.  相似文献   

2.
Phenamiphos applied at 6.7 kg ai/ha through a solid set or a center pivot irrigation system with 28 mm of water effectively controlled root-knot nematodes, Meloidogyne incognita, and resulted in greater snap bean growth and yields irrespective of growing season, tillage method, or cover crop system. The percentage yield increases attributed to this method of M. incognita control over nontreated controls were 45% in the spring crop, and 90% and 409% in the fall crops following winter rye and fallow, respectively. Root galling was not affected by tillage systems or cover crop, but disk tillage resulted in over 50% reduction in bean yield compared with yields from the subsoil-bed tillage system.  相似文献   

3.
Management of Meloidogyne incognita on soybean as affected by winter small grain crops or fallow, two tillage systems, and nematicides was studied. Numbers of M. incognita did not differ in plots planted to wheat and rye. Yields of soybean planted after these crops also did not differ. Numbers of M. incognita were greater in fallow than in rye plots, but soybean yield was not affected by the two treatments. Soybean yields were greater in subsoil-plant than in moldboard plowed plots. Ethylene dibromide reduced nematode population densities more consistently than aldicarb and phenamiphos. Also, ethylene dibromide increased yields the most and phenamiphos the least. There was a positive correlation (P = 0.001) of seed size (weight of 100 seeds) with yield (r = 0.79), indicating that factors affecting yield also affected seed size.  相似文献   

4.
The effects of planting date, rye (Secale cereale cv. Wren Abruzzi) and wheat (Triticura aestivum cv. Coker 797), crop destruction, fallow, and soil temperature on managing Meloidogyne incognita race 1 were determined in a 2-year study. More M. incognita juveniles (J2) and egg-producing adults were found in roots of rye planted 1 October than in roots of rye planted 1 November and wheat planted 1 November and 1 December. Numbers of M. incognita adults with and without egg masses were near or below detectable levels in roots of rye planted 1 November and wheat planted 1 November and 1 December. Meloidogyne incognita survived the mild winters in southern Georgia as J2 and eggs. The destruction of rye and wheat as a trap crop 1 March suppressed numbers of J2 in the soil temporarily but did not provide long-term benefits for susceptible crops that followed. In warmer areas where rye and wheat are grown in winter, reproduction of M. incognita may be avoided by delaying planting dates until soil temperature declines below the nematode penetration threshold (18 C), but no long-term benefits should be expected. The temperature threshold may be an important consideration in managing M. incognita population densities in areas having lower winter soil temperatures than southern Georgia.  相似文献   

5.
Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.  相似文献   

6.
The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.  相似文献   

7.
The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) ''Lemondrop L'' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) ''Classic'' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: ''Hale'' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, ''SX- 17'' sorghum-sudangrass (Sorghum bicolor x S. sudanense), ''Kirby'' soybean (Glycine max), and ''Clemson Spineless'' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P ≤ 0.05) following sorghum-sudangrass than after any of the other treatments except fallow. Yield of eggplant was greater (P ≤ 0.05) following castor, sesame, or American jointvetch than following okra or fallow. Several of the rotation crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.  相似文献   

8.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.  相似文献   

9.
Oliveira  A.L.M.  Urquiaga  S.  Döbereiner  J.  Baldani  J.I. 《Plant and Soil》2002,238(2):205-215
We investigated the effects of an autumn sowing of contrasting cover crops (oats, rye and a combination of oats and rye) on soil aggregate stability, mycorrhizal colonization, phosphorus uptake and yield of sweet corn planted the following summer. Rye is a common cover crop in the middle Atlantic region of the United States of America. It grows slowly in the autumn, survives the winter, grows rapidly in the spring and flowers in the summer. Thus, herbicide is commonly used to kill rye prior to planting spring crops. Oats, in contrast, grows rapidly in the autumn but is killed by frost during the winter. Thus, with oats, potentially less herbicide is needed to prepare the field for spring planting. When compared to fallow, oats was as effective as rye in increasing mycorrhizal colonization of sweet corn, density of mycorrhizal hyphae, and soil aggregate stability. An oats cover crop may thus be a viable alternative to rye. The combination of cover crops (rye and oats), however, was significantly better than single species of cover crops in terms of sweet corn mycorrhizal colonization, P uptake and yield of sweet corn.  相似文献   

10.
One-year crop rotations with corn or highly resistant soybean were evaluated at four locations for their effect on Rotylenchulus reniformis population levels and yield of a subsequent cotton crop. Four nematicide (aldicarb) regimes were included at two of the locations, and rotation with reniform-susceptible soybean was included at the other two locations. One-year rotations to corn or resistant soybean resulted in lower R. reniformis population levels (P ≤ 0.05) than those found in cotton at three test sites. However, the effect of rotation on nematode populations was undetectable by mid-season when cotton was grown the following year. Cotton yield following a one-year rotation to resistant soybean increased at all test locations compared to continuous cotton, and yield following corn increased at three locations. The optimum application rate for aldicarb in this study was 0.84 kg a.i./ha in furrow. Side-dress applications of aldicarb resulted in yield increases that were insufficient to cover the cost of application in 3 of the 4 years.  相似文献   

11.
The microbial degradation of aldicarb was examined in the greenhouse using soil from four cotton fields with a history of aldicarb use. The addition of aldicarb at 0.59 kg a.i./ha to natural soil increased Rotylenchulus reniformis numbers 6.6% in one soil and decreased R. reniformis numbers only 25.8% in another soil as compared to the corresponding natural soil without aldicarb. The use of increasing rates of aldicarb did not increase the efficacy of aldicarb in these soils. Rotylenchulus reniformis numbers were reduced 39.8, 22.6, and 6.8%, and increased 5.7% for aldicarb applied at 0.29, 0.59, 0.85, and 1.19 kg a.i./ha, respectively, in one natural soil. In another natural soil, R. reniformis numbers were reduced 42.5 and 21.9% for aldicarb applied at 0.29 and 1.19 kg a.i./ha, respectively, but increased 19.1 and 10.6% for aldicarb applied at 0.59 and 0.85 kg a.i./ha, respectively. Autoclaving the soils restored aldicarb toxicity in both soils, and R. reniformis numbers were reduced 96 and 99%, respectively, as compared to autoclaved soil without aldicarb. Bacterial populations were greater in the natural soils where aldicarb did not reduce R. reniformis numbers relative to the same soils that were autoclaved. However, no bacterial species was consistently associated with aldicarb degradation.  相似文献   

12.
During a 6-year study of 1-, 2-, and 3-year crop rotations, population densities of Pratylenchus brachyurus, Trichodorus christiei, and Meloidogyne incognita were significantly affected by the choice of crops but not by length of crop rotation. The density of P. brachyurus and T. christiei increased rapidly on milo (Sorghum vulgate). In addition, populations of P. brachyurus increased significantly in cropping systems that involved crotalaria (C. rnucronata), millet (Setaria italica), and sudangrass (Sorghum sudanense). Lowest numbers of P. brachyurus occurred where okra (Hibiscus esculentus) was grown or where land was fallow. The largest increase in populations of T. christiei occurred in cropping systems that involved millet, sudangrass, and okra whereas the smallest increase occurred in cropping systems that involved crotalaria or fallow. A winter cover of rye (Secale cereale) had no distinguishable effect on population densities of P. brachyurus or T. christiei. Meloidogyne incognita was detected during the fourth year in both newly cleared and old agricultural land when okra was included in the cropping system. Detectable populations of M. incognita did not develop in any of the other cropping systems. Yields of tomato transplants were higher on the newly cleared land than on the old land. Highest yields were obtained when crotalaria was included in the cropping system. Lowest yields were obtained when milo, or fallow were included in the cropping system. Length of rotation had no distinguishable effect on yields of tomato transplants.  相似文献   

13.
The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P ≤ 0.05) numbers of M. arenaria juveniles on most sampling dates. Soybean, horsebean, and sesame rotations were less effective in suppressing nematodes. Yield of squash was greater (P ≤ 0.05) following castor, cotton, velvetbean, and crotalaria than following peanut. Compared to the peanut rotation, yield of eggplant was enhanced (P ≤ 0.10) following castor, crotalaria, hairy indigo, American jointvetch, and sorghum-sudangrass. Several of these rotation crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.  相似文献   

14.
Cotton farmers in Missouri commonly apply a single rate of aldicarb throughout the field at planting to protect their crop from Meloidogyne incognita, even though these nematodes are spatially aggregated. Our purpose was to determine the effect of site-specific application of aldicarb on cotton production in a field infested with these nematodes in 1997 and 1998. Cotton yields were collected from sites not treated with aldicarb (control), sites receiving aldicarb at the standard recommended rate of 0.58 kg a.i./ha, and sites receiving specific aldicarb rates based on the soil population densities of second-stage infective juveniles of root-knot nematode. Yields for the standard rate and site-specific rate treatments were similar and greater (P ≤ 0.05) than the control treatment. Less aldicarb was used for the site-specific than the uniform-rate treatment each year—46% less in 1997 and 61% less in 1998. Costs associated with the site-specific treatment were very high compared with the uniform-rate treatment due to a greater number of soil samples analyzed for nematodes. Site-specific application of aldicarb for root-knot nematode management in cotton may pose fewer environmental risks than the uniform-rate application of aldicarb.  相似文献   

15.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

16.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

17.
Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States.  相似文献   

18.
The efficacy of fallow and coastal bermudagrass (Cynodon dactylon) as a rotation crop for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus cv. Emerald), squash (Cucurbita pepo cv. Dixie Hybrid), and sweet corn (Zea mays cv. Merit) was evaluated in a 3-year field trial. Numbers of M. incognita in the soil and root-gall indices were greater on okra and squash than sweet corn and declined over the years on vegetable crops following fallow and coastal bermudagrass sod. Fusarium oxysporum and Pythium spp. were isolated most frequently from soil and dying okra plants. Numbers of colony-forming units of soilborne fungi generally declined as the number of years in sod increased, but were not affected by coastal bermudagrass sod. Yields of okra following 2-year and 3-year sod and squash following 2-year sod were greater than those following fallow. Yield of sweet corn was not different following fallow and coastal bermudagrass sod.  相似文献   

19.
Field experiments were conducted for control of the southern root-knot nematode (Meloidogyne incognita) and cotton seedling disease fungi (primarily Thielaviopsis basicola) in one naturally infested field during 1999 and 2000 and in three additional fields in 2000. Treatments included: seed-applied fungicides (triadimenol + mefenoxam + thiram and carboxin + PCNB + mefenoxam), cultivars (Paymaster [PM] 2326 RR and PM 2200 RR), and a nematicide (aldicarb at 0.83 kg a.i/ha). Plant stands were higher (P = 0.02) in the presence of aldicarb (77% emergence) than in its absence (74% emergence). Hypocotyl disease symptom ratings were lower (P = 0.0001) following triadimenol + mefenoxam + thiram seed treatment (0.53) as compared with carboxin + PCNB + mefenoxam (0.93). Root necrosis was lower (P = 0.002) following triadimenol + mefenoxam + thiram seed treatment (27%) as compared with carboxin + PCNB + mefenoxam (34%). In one field, in both years, aldicarb was associated with more root necrosis (58%) than in its absence (46%) (P = 0.004). At three other sites aldicarb did not affect root necrosis. Population densities of Meloidogyne incognita eggs and juveniles at midseason were greater (P = 0.005, P = 0.003, respectively) on PM 2200 RR (less resistant) than on PM 2326 RR (more resistant). Yield was affected by the plant genotype by aldicarb interaction (P = 0.02) but not by seed treatments. Aldicarb effect on yield was dependent on cultivar, whereas affect of seed treatment on root health was consistent and independent of cultivar and aldicarb. No conditions were identified when use of triadimenol + mefenoxam was detrimental.  相似文献   

20.
Three field experiments were established in a loamy sand soil in the Coastal Plain of North Carolina to determine downward movement of aldicarb and fenamiphos with a nematode bioassay. Penetration of bioassay plant roots by Meloidogyne incognita was measured at 1, 3, 7, 14, 21, and 28 days after treatment in the greenhouse as a means of determining nematicide effectiveness. Chemical movement was similar in planted and fallow soil. Nematicidal activity was greater in soil collected from the 0 to 10 cm depth than from the 10 to 20 cm depth. Fenamiphos suppressed host penetration by the nematode more than aldicarb under the high rainfall (19 cm) and low soil temperatures that occurred soon after application in the spring. During the summer, which had 13 cm precipitation and warmer soil temperatures, both chemicals performed equally well at the 0 to 10 cm depth. At the lower soil level (10 to 20 cm), aldicarb limited nematode penetration of host roots more quickly than fenamiphos. Both of these chemicals moved readily in the sandy soil in concentrations sufficient to control M. incognita. Although some variability was encountered in similar experiments, nematodes such as M. incognita have considerable potential as biomonitors of nematicide movement in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号