首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Tang Y  Pan X  Chen Y  Tai PC  Sui SF 《PloS one》2011,6(1):e16498
The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles.  相似文献   

2.
Covalently dimerized SecA is functional in protein translocation   总被引:1,自引:0,他引:1  
The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.  相似文献   

3.
SecA is the ATPase that provides energy for translocation of precursor polypeptides through the SecYEG translocon in Escherichia coli during protein export. We showed previously that when SecA receives the precursor from SecB, the ternary complex is fully active only when two protomers of SecA are bound. Here we used variants of SecA and of SecB that populate complexes containing two protomers of SecA to different degrees to examine both the hydrolysis of ATP and the translocation of polypeptides. We conclude that the low activity of the complexes with only one protomer is the result of a low efficiency of coupling between ATP hydrolysis and translocation.  相似文献   

4.
Dual-color fluorescence-burst analysis (DCFBA) was applied to measure the quaternary structure and high-affinity binding of the bacterial motor protein SecA to the protein-conducting channel SecYEG reconstituted into lipid vesicles. DCFBA is an equilibrium technique that enables the direct observation and quantification of protein-protein interactions at the single molecule level. SecA binds to SecYEG as a dimer with a nucleotide- and preprotein-dependent dissociation constant. One of the SecA protomers binds SecYEG in a salt-resistant manner, whereas binding of the second protomer is salt sensitive. Because protein translocation is salt sensitive, we conclude that the dimeric state of SecA is required for protein translocation. A structural model for the dimeric assembly of SecA while bound to SecYEG is proposed based on the crystal structures of the Thermotoga maritima SecA-SecYEG and the Escherichia coli SecA dimer.  相似文献   

5.
SecA is the ATPase that acts as the motor for protein export in the general secretory, or Sec, system of Escherichia coli. The tetrameric cytoplasmic chaperone SecB binds to precursors of exported proteins before they can become stably folded and delivers them to SecA. During this delivery step, SecB binds to SecA. The complex between SecA and SecB that is maximally active in translocation contains two protomers of SecA bound to a tetramer of SecB. The aminoacyl residues on each protein that are involved in binding the other have previously been identified by site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy; however, that study provided no information concerning the relative orientation of the proteins within the complex. Here we used our extensive collection of single-cysteine variants of the two proteins and subjected pairwise combinations of SecA and SecB to brief oxidation to identify residues in close proximity. These data were used to generate a model for the orientation of the two proteins within the complex.  相似文献   

6.
Duong F 《The EMBO journal》2003,22(17):4375-4384
The bacterial preprotein translocase is comprised of a membrane-embedded oligomeric SecYEG structure and a cytosolic dimeric SecA ATPase. The associations within SecYEG oligomers and SecA dimers, as well as between these two domains are dynamic and reversible. Here, it is shown that a covalently linked SecYEG dimer forms a functional translocase and a high affinity binding site for monomeric and dimeric SecA in solution. The interaction between these two domains stimulates the SecA ATPase, and nucleotides modulate the affinity and ratio of SecA monomers and dimers bound to the linked SecYEG complex. During the translocation reaction, the SecA monomer remains in stable association with a SecYEG protomer and the translocating preprotein. The nucleotides and translocation-dependent changes of SecA-SecYEG associations and the SecA dimeric state may reflect important facets of the preprotein translocation reaction.  相似文献   

7.
Musial-Siwek M  Rusch SL  Kendall DA 《Biochemistry》2005,44(42):13987-13996
SecA, the peripheral subunit of the Escherichia coli preprotein translocase, interacts with a number of ligands during export, including signal peptides, membrane phospholipids, and nucleotides. Using fluorescence resonance energy transfer (FRET), we studied the interactions of wild-type (WT) and mutant SecAs with IAEDANS-labeled signal peptide, and how these interactions are modified in the presence of other transport ligands. We find that residues on the third alpha-helix in the preprotein cross-linking domain (PPXD) are important for the interaction of SecA and signal peptide. For SecA in aqueous solution, saturation binding data using FRET analysis fit a single-site binding model and yielded a Kd of 2.4 microM. FRET is inhibited for SecA in lipid vesicles relative to that in aqueous solution at a low signal peptide concentration. The sigmoidal nature of the binding curve suggests that SecA in lipids has two conformational states; our results do not support different oligomeric states of SecA. Using native gel electrophoresis, we establish signal peptide-induced SecA monomerization in both aqueous solution and lipid vesicles. Whereas the affinity of SecA for signal peptide in an aqueous environment is unaffected by temperature or the presence of nucleotides, in lipids the affinity decreases in the presence of ADP or AMP-PCP but increases at higher temperature. The latter finding is consistent with SecA existing in an elongated form while inserting the signal peptide into membranes.  相似文献   

8.
Ding H  Hunt JF  Mukerji I  Oliver D 《Biochemistry》2003,42(29):8729-8738
SecA ATPase promotes the biogenesis of membrane and secretory proteins into and across the cytoplasmic membrane of Eubacteria. SecA binds to translocon component SecYE and substrate proteins and undergoes ATP-dependent conformational cycles that are coupled to the stepwise translocation of proteins. Our recent crystal structure of B. subtilis SecA [Hunt, J. F., Weinkauf, S., Henry, L., Fak, J. J., McNicholas, P., Oliver, D. B., and Deisenhofer, J. (2002) Science 297, 2018-2026] showed two different dimer interactions in the lattice which both buried significant solvent-accessible surface area in their interface and could potentially be responsible for formation of the physiological dimer in solution. In this paper, we utilize fluorescence resonance energy transfer methodology with genetically engineered SecA proteins containing unique pairs of tryptophan and fluorophore-labeled cysteine residues to determine the oligomeric structure of SecA protein in solution. Our results show that of the two dimers interactions observed in the crystal structure, SecA forms an antiparallel dimer in solution that maximizes the buried solvent-accessible surface area and intermolecular contacts. At the submicromolar protein concentrations used in the fluorescence experiments, we saw no evidence for the formation of higher-order oligomers of SecA based on either the alternative dimer or the 3(1) helical fiber observed in the crystal lattice. Our studies are consistent with previous ones demonstrating the existence of a dimerization determinant within the C-domain of SecA as well as those documenting the interaction of N- and C-domains of SecA. Our results also provide a valuable starting point for a determination of whether the subunit status of SecA changes during the protein translocation as well as studies designed to elucidate the conformational dynamics of this multidomain protein during its translocation cycle.  相似文献   

9.
SecA is a multifunctional protein involved in protein translocation in bacteria. The structure of SecA on membrane is dramatically altered compared with that in solution, accompanying with functional changes. We previously reported the formation of a novel ring-like structure of SecA on lipid layers, which may constitute part of the preprotein translocation channel. In the present work, two-dimensional crystallization of Escherichia coli SecA on lipid monolayers was performed to reveal the structural details of SecA on lipid layers and to investigate its function. The 2D crystals composed of ring-like structures were obtained by specific interaction between SecA and negatively charged lipid. The 2D projection map and 3D reconstruction from negative stained 2D crystals exhibited a distinct open channel-like structure of SecA, with an outer diameter of 7 nm and an inner diameter of 2 nm, providing the structural evidence for SecA importance in forming the part of the translocation channel. This pore structure is altered after transferring crystals to the SecB solution, indicating that the lipid-specific SecA structure has the SecB binding activity. The strategy developed here provides a promising technique for studying structure of SecA complex with its ligand on membrane.  相似文献   

10.
SecA is an ATPase nanomotor critical for bacterial secretory protein translocation. Secretory proteins carry an amino-terminal signal peptide that is recognized and bound by SecA followed by its transfer across the SecYEG translocon. While this process is crucial for the onset of translocation, exactly where the signal peptide interacts with SecA is unclear. SecA protomers also interact among themselves to form dimers in solution, yet the oligomeric interface and the residues involved in dimerization are unknown. To address these issues, we utilized the substituted cysteine accessibility method (SCAM); we generated a library of 23 monocysteine SecA mutants and probed for the accessibility of each mutant cysteine to maleimide-(polyethylene glycol)2-biotin (MPB), a sulfhydryl-labeling reagent, both in the presence and absence of a signal peptide. Dramatic differences in MPB labeling were observed, with a select few mutants located at the preprotein cross-linking domain (PPXD), the helical wing domain (HWD), and the helical scaffold domain (HSD), indicating that the signal peptide binds at the groove formed between these three domains. The exposure of this binding site is varied under different conditions and could therefore provide an ideal mechanism for preprotein transfer into the translocon. We also identified residues G793, A795, K797, and D798 located at the two-helix finger of the HSD to be involved in dimerization. Adenosine-5′-(γ-thio)-triphosphate (ATPγS) alone and, more extensively, in conjunction with lipids and signal peptides strongly favored dimer dissociation, while ADP supports dimerization. This study provides key insight into the structure-function relationships of SecA preprotein binding and dimer dissociation.  相似文献   

11.
SecA is the preprotein translocase ATPase subunit and a superfamily 2 (SF2) RNA helicase. Here we present the 2 A crystal structures of the Escherichia coli SecA homodimer in the apo form and in complex with ATP, ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP). Each monomer contains the SF2 ATPase core (DEAD motor) built of two domains (nucleotide binding domain, NBD and intramolecular regulator of ATPase 2, IRA2), the preprotein binding domain (PBD), which is inserted in NBD and a carboxy-terminal domain (C-domain) linked to IRA2. The structures of the nucleotide complexes of SecA identify an interfacial nucleotide-binding cleft located between the two DEAD motor domains and residues critical for ATP catalysis. The dimer comprises two virtually identical protomers associating in an antiparallel fashion. Dimerization is mediated solely through extensive contacts of the DEAD motor domains leaving the C-domain facing outwards from the dimerization core. This dimerization mode explains the effect of functionally important mutations and is completely different from the dimerization models proposed for other SecA structures. The repercussion of these findings on translocase assembly and catalysis is discussed.  相似文献   

12.
The multimeric membrane protein complex translocase mediates the transport of preproteins across and integration of membrane proteins into the inner membrane of Escherichia coli. The translocase consists of the peripheral membrane-associated ATPase SecA and the heterotrimeric channel-forming complex consisting of SecY, SecE and SecG. We have investigated the quaternary structure of the SecYEG complex in proteoliposomes. Fluorescence resonance energy transfer demonstrates that SecYEG forms oligomers when embedded in the membrane. Freeze-fracture techniques were used to examine the oligomeric composition under non-translocating and translocating conditions. Our data show that membrane-embedded SecYEG exists in a concentration-dependent equilibrium between monomers, dimers and tetramers, and that dynamic exchange of subunits between oligomers can occur. Remarkably, the formation of dimers and tetramers in the lipid environment is stimulated significantly by membrane insertion of SecA and by the interaction with translocation ligands SecA, preprotein and ATP, suggesting that the active translocation channel consists of multiple SecYEG complexes.  相似文献   

13.
The SecYEG complex is a membrane-embedded channel that permits the passage of precursor proteins (preproteins) across the inner membrane of Escherichia coli. SecA is a molecular motor that associates with the SecYEG pore and drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the conformational state of soluble and SecYEG-bound SecA using single tryptophan mutants of SecA. The fluorescence spectral properties of the single tryptophans of SecA and their accessibility to the quencher acrylamide demonstrate that SecA undergoes a conformational change that results in a more compact structure upon binding of ATP and binding to the SecYEG pore. In addition, SecYEG-bound SecA undergoes ATP-dependent conformational changes that are not observed for soluble SecA. These data support a model in which binding to the SecYEG channel has a major impact on the SecA conformation.  相似文献   

14.
Many proteins synthesized in the cytoplasm ultimately function in non-cytoplasmic locations. In Escherichia coli, the general secretory (Sec) pathway transports the vast majority of these proteins. Two fundamental components of the Sec transport pathway are the SecYEG heterotrimeric complex that forms the channel through the cytoplasmic membrane, and SecA, the ATPase that drives the preprotein to and across the membrane. This review focuses on what is known about the oligomeric states of these core Sec components and how the oligomeric state might change during the course of the translocation of a preprotein.  相似文献   

15.
The transport of proteins across the plasma membrane in bacteria requires a channel formed from the SecY complex, which cooperates with either a translating ribosome in cotranslational translocation or the SecA ATPase in post-translational translocation. Whether translocation requires oligomers of the SecY complex is an important but controversial issue: it determines channel size, how the permeation of small molecules is prevented, and how the channel interacts with the ribosome and SecA. Here, we probe in vivo the oligomeric state of SecY by cross-linking, using defined co- and post-translational translocation intermediates in intact Escherichia coli cells. We show that nontranslocating SecY associated transiently through different interaction surfaces with other SecY molecules inside the membrane. These interactions were significantly reduced when a translocating polypeptide inserted into the SecY channel co- or post-translationally. Mutations that abolish the interaction between SecY molecules still supported viability of E. coli. These results show that a single SecY molecule is sufficient for protein translocation.  相似文献   

16.
Miller A  Wang L  Kendall DA 《Biochemistry》2002,41(16):5325-5332
In Escherichia coli, the formation of SecA-SecB complexes has a direct effect on SecA ATPase activity. The mechanism of this interaction was evaluated and defined using controlled trypsinolysis, equilibrium dialysis at low temperature, and kinetic analyses of the SecA ATPase reaction. The proteolysis data indicate that SecB and the nonhydrolyzable ATP analogue AMP-P-C-P induce similar conformational changes in SecA which result in a more open or extended structure that is suggestive of the ATP-bound form. The effect is synergistic and concentration-dependent, and requires the occupation of both the high- and low-affinity nucleotide binding sites for maximum effect. The equilibrium dialysis experiments and kinetic data support the observation that the SecB-enhanced SecA ATPase activity is the result of an increased rate of ATP hydrolysis rather than an increase in the affinity of ATP for SecA and that the high-affinity nucleotide binding site is conformationally regulated by SecB. It appears that SecB may function as an intermolecular regulator of ATP hydrolysis by promoting the ATP-bound state of SecA. The inhibition of SecA ATPase activity by sodium azide in the presence of IMVs and a functional signal peptide further indicates that SecB promotes the ATP-bound form of SecA.  相似文献   

17.
SecB, a small tetrameric chaperone in Escherichia coli, facilitates export of precursor polypeptides from the cytoplasm to the periplasmic space. During this process, SecB displays two modes of binding. As a chaperone, it binds promiscuously to precursors to maintain them in a non-native conformation. SecB also demonstrates specific recognition of, and binding to, SecA. SecB with the precursor tightly bound enters an export-active complex with SecA and must pass the ligand to SecA at the translocon in the membrane. Here we use variants of SecA and SecB to further probe these interactions. We show that, unexpectedly, the binding between the two symmetric molecules is asymmetric and that the C-terminal alpha-helices of SecB bind in the interfacial region of the SecA dimer. We suggest that disruption of this interface by SecB facilitates conformational changes of SecA that are crucial to the transfer of the precursor from SecB to SecA.  相似文献   

18.
The mechanism of pre-protein export through the bacterial cytoplasmic membrane, in which the SecA ATPase plays a crucial role as an "energy supplier", is poorly understood. In particular, biochemical and structural studies provide contradictory data as to the oligomeric state of SecA when it is integrated into the active trans-membrane translocase. Here, we report the 2.8 A resolution crystal structure of the Thermus thermophilus SecA protein (TtSecA). Whereas the structure of the TtSecA monomer closely resembles that from other bacteria, the oligomeric state of TtSecA is strikingly distinct. In contrast to the antiparallel (head-to-tail) dimerization reported previously for the other bacterial systems, TtSecA forms parallel (head-to-head) dimers that are reminiscent of open scissors. The dimer interface is abundant in bulky Arg and Lys side-chains from both subunits, which stack on one another to form an unusual "basic zipper" that is highly conserved, as revealed by homology modeling and sequence analysis. The basic zipper is sealed on both ends by two pairs of the salt bridges formed between the basic side-chains from the zipper and two invariant acidic residues. The organization of the dimers, in which the two pre-protein binding domains are located proximal to each other at the tip of the "scissors", might allow a concerted mode of substrate recognition while the opening/closing of the scissors might facilitate translocation.  相似文献   

19.
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.  相似文献   

20.
A major difficulty in determining the structure of an oligomeric protein by NMR is the problem of distinguishing inter- from intraprotomer NOEs. In order to address this issue in studies of the 27 kD compact trimeric domain of the MHC class II-associated invariant chain, we compared the 13C NOESY-HSQC spectrum of a uniformly 13C-labeled trimer with the spectrum of the same trimer labeled with 13C in only one protomer, and with deuterium in the other two protomers. The spectrum of the unmixed trimer included both inter- and intraprotomer NOEs while the spectrum of the mixed trimer included only intraprotomer peaks. NOEs clearly absent from the spectrum of the mixed trimer could be confidently assigned to interprotomer interactions. Asymmetrically labeled trimers were isolated by refolding a 13C-labeled shorter form of the protein with a 2H-labeled longer form, chromatographically purifying trimers with only one short chain, and then processing with trypsin to yield only protomers with the desired N- and C-termini. In contrast to earlier studies, in which statistical mixtures of differently labeled protomers were analyzed, our procedure generated only a well-defined 1:2 oligomer, and no other mixed oligomers were present. This increased the maximum possible concentration of NMR-active protomers and thus the sensitivity of the experiments. Related methods should be applicable to many oligomeric proteins, particularly those with slow protomer exchange rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号