首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Endothelial nitric oxide synthase (eNOS) is an important regulator of cardiovascular homeostasis by production of nitric oxide (NO) from vascular endothelial cells. It can be activated by protein kinase B (PKB)/Akt via phosphorylation at Ser-1177. We are interested in the role of Rho GTPase/Rho kinase (ROCK) pathway in regulation of eNOS expression and activation. Using adenovirus-mediated gene transfer in human umbilical vein endothelial cells (HUVECs), we show here that both active RhoA and ROCK not only downregulate eNOS gene expression as reported previously but also inhibit eNOS phosphorylation at Ser-1177 and cellular NO production with concomitant suppression of PKB activation. Moreover, coexpression of a constitutive active form of PKB restores the phosphorylation but not gene expression of eNOS in the presence of active RhoA. Furthermore, we show that thrombin inhibits eNOS phosphorylation, as well as expression via Rho/ROCK pathway. Expression of the active PKB reverses eNOS phosphorylation but has no effect on downregulation of eNOS expression induced by thrombin. Taken together, these data demonstrate that Rho/ROCK pathway negatively regulates eNOS phosphorylation through inhibition of PKB, whereas it downregulates eNOS expression independent of PKB.  相似文献   

3.
Coupling of G proteins to ligand-engaged chemokine receptors is the paramount event in G-protein-coupled receptor signal transduction. Previously, we have demonstrated that the human cytomegalovirus-encoded chemokine receptor US28 mediates human vascular smooth muscle cell (SMC) migration in response to either RANTES or monocyte chemoattractant protein 1. In this report, we identify the G proteins that couple with US28 to promote vascular SMC migration and identify other signaling molecules that play critical roles in this process. US28-mediated cellular migration was enhanced with the expression of the G-protein subunits Galpha12 and Galpha13, suggesting that US28 may functionally couple to these G proteins. In correlation with this observation, US28 was able to activate RhoA, a downstream effector of Galpha12 and Galpha13 in cell types with these G proteins but not in those without them and activation of RhoA was dependent on US28 stimulation with RANTES. In addition, inactivation of RhoA or the RhoA-associated kinase p160ROCK with a dominant-negative mutant of RhoA or the small molecule inhibitor Y27632, respectively, abrogated US28-induced SMC migration. The data presented here suggest that US28 functionally signals through Galpha12 family G proteins and RhoA in a ligand-dependent manner and these signaling molecules are important for the ability of US28 to induce cellular migration.  相似文献   

4.
Multiple Ca2+ release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca2+ signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIδ6 isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nm thrombin maximally increased CaMKIIδ6 activation assessed by Thr287 autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIδ (siCaMKIIδ) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nm thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIδ inhibited 2.5 nm thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIδ6 mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIδ6/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.  相似文献   

5.
We identified the GDI-1-regulated mechanism of RhoA activation from the Rho-GDI-1 complex and its role in mediating increased endothelial permeability. Thrombin stimulation failed to induce RhoA activation and actin stress fiber formation in human pulmonary arterial endothelial cells transduced with full-length GDI-1. Expression of a GDI-1 mutant form (C-GDI) containing the C terminus (aa 69 to 204) also prevented RhoA activation, whereas further deletions failed to alter RhoA activation. We observed that protein kinase Calpha-mediated phosphorylation of the C terminus of GDI-1 at Ser96 reduced the affinity of GDI-1 for RhoA and thereby enabled RhoA activation. Rendering GDI-1 phosphodefective with a Ser96 --> Ala substitution rescued the inhibitory activity of GDI-1 toward RhoA but did not alter the thrombin-induced activation of other Rho GTPases, i.e., Rac1 and Cdc42. Phosphodefective mutant GDI-1 also suppressed myosin light chain phosphorylation, actin stress fiber formation, and the increased endothelial permeability induced by thrombin. In contrast, expressing the phospho-mimicking mutant S96D-GDI-1 protein induced RhoA activity and increased endothelial permeability independently of thrombin stimulation. These results demonstrate the crucial role of the phosphorylation of the C terminus of GDI-1 at S96 in selectively activating RhoA. Inhibiting GDI-1 phosphorylation at S96 is a potential therapeutic target for modulating RhoA activity and thus preventing the increase in endothelial permeability associated with vascular inflammation.  相似文献   

6.
The adherens junction is a multiprotein complex consisting of the transmembrane vascular endothelial cadherin (VEC) and cytoplasmic catenins (p120, beta-catenin, plakoglobin, alpha-catenin) responsible for the maintenance of endothelial barrier function. Junctional disassembly and modifications in cadherin/catenin complex lead to increased paracellular permeability of the endothelial barrier. However, the mechanisms of junctional disassembly remain unclear. In this study, we used the proinflammatory mediator thrombin to compromise the barrier function and test the hypothesis that phosphorylation-induced alterations of VEC, beta-catenin, and p120 regulate junction disassembly and mediate the increased endothelial permeability response. The study showed that thrombin induced dephosphorylation of VEC, which is coupled to disassembly of cell-cell contacts, but VEC remained in aggregates at the plasma membrane. The cytoplasmic catenins dissociated from the VEC cytoplasmic domain in thin membrane projections formed in interendothelial gaps. We also showed that thrombin induced dephosphorylation of beta-catenin and phosphorylation of p120. Thrombin-induced interendothelial gap formation and increased endothelial permeability were blocked by protein kinase C inhibition using chelerythrine and G?-6976 but not by LY-379196. Chelerythrine also prevented thrombin-induced phosphorylation changes of the cadherin/catenin complex. Thus the present study links posttranslational modifications of VEC, beta-catenin, and p120 to the mechanism of thrombin-induced increase in endothelial permeability.  相似文献   

7.
An imbalance between thrombin and antithrombin III contributed to vascular hyporeactivity in sepsis, which can be attributed to excess NO production by inducible nitric-oxide synthase (iNOS). In view of the importance of the thrombin-activated coagulation pathway and excess NO as the culminating factors in vascular hyporeactivity, this study investigated the effects of thrombin on the induction of iNOS and NO production in macrophages. Thrombin induced iNOS protein in the Raw264.7 cells, which was inhibited by a thrombin inhibitor, LB30057. Thrombin increased NF-kappaB DNA binding, whose band was supershifted with anti-p65 and anti-p50 antibodies. Thrombin elicited the phosphorylation and degradation of I-kappaBalpha prior to the nuclear translocation of p65. The NF-kappaB-mediated iNOS induction was stimulated by the overexpression of activated mutants of Galpha(12/13) (Galpha(12/13)QL). Protein kinase C depletion inhibited I-kappaBalpha degradation, NF-kappaB activation, and iNOS induction by thrombin or the iNOS induction by Galpha(12/13)QL. JNK, p38 kinase, and ERK were all activated by thrombin. JNK inhibition by the stable transfection with a dominant negative mutant of JNK1 (JNK1(-)) completely suppressed the NF-kappaB-mediated iNOS induction by thrombin. Conversely, the inhibition of p38 kinase enhanced the expression of iNOS. In addition, JNK and p38 kinase oppositely controlled the NF-kappaB-mediated iNOS induction by Galpha(12/13)QL. Hence, iNOS induction by thrombin was regulated by the opposed functions of JNK and p38 kinase downstream of Galpha(12/13). In the JNK1(-) cells, thrombin did not increase either the NF-kappaB binding activity or I-kappaBalpha degradation despite I-kappaBalpha phosphorylation. These results demonstrated that thrombin induces iNOS in macrophages via Galpha(12) and Galpha(13), which leads to NF-kappaB activation involving the protein kinase C-dependent phosphorylation of I-kappaBalpha and the JNK-dependent degradation of phosphorylated I-kappaBalpha.  相似文献   

8.

Background

Angiopoietin-2 (Ang-2) is associated with lung injury in ALI/ARDS. As endothelial activation by thrombin plays a role in the permeability of acute lung injury and Ang-2 may modulate the kinetics of thrombin-induced permeability by impairing the organization of vascular endothelial (VE-)cadherin, and affecting small Rho GTPases in human pulmonary microvascular endothelial cells (HPMVECs), we hypothesized that Ang-2 acts as a sensitizer of thrombin-induced hyperpermeability of HPMVECs, opposed by Ang-1.

Methodology/Principal Findings

Permeability was assessed by measuring macromolecule passage and transendothelial electrical resistance (TEER). Angiopoietins did not affect basal permeability. Nevertheless, they had opposing effects on the thrombin-induced permeability, in particular in the initial phase. Ang-2 enhanced the initial permeability increase (passage, P = 0.010; TEER, P = 0.021) in parallel with impairment of VE-cadherin organization without affecting VE-cadherin Tyr685 phosphorylation or increasing RhoA activity. Ang-2 also increased intercellular gap formation. Ang-1 preincubation increased Rac1 activity, enforced the VE-cadherin organization, reduced the initial thrombin-induced permeability (TEER, P = 0.027), while Rac1 activity simultaneously normalized, and reduced RhoA activity at 15 min thrombin exposure (P = 0.039), but not at earlier time points. The simultaneous presence of Ang-2 largely prevented the effect of Ang-1 on TEER and macromolecule passage.

Conclusions/Significance

Ang-1 attenuated thrombin-induced permeability, which involved initial Rac1 activation-enforced cell-cell junctions, and later RhoA inhibition. In addition to antagonizing Ang-1, Ang-2 had also a direct effect itself. Ang-2 sensitized the initial thrombin-induced permeability accompanied by destabilization of VE-cadherin junctions and increased gap formation, in the absence of increased RhoA activity.  相似文献   

9.
Thrombin-induced endothelial cell barrier dysfunction is tightly linked to Ca(2+)-dependent cytoskeletal protein reorganization. In this study, we found that thrombin increased Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) activities in a Ca(2+)- and time-dependent manner in bovine pulmonary endothelium with maximal activity at 5 min. Pretreatment with KN-93, a specific CaM kinase II inhibitor, attenuated both thrombin-induced increases in monolayer permeability to albumin and decreases in transendothelial electrical resistance (TER). We next explored potential thrombin-induced CaM kinase II cytoskeletal targets and found that thrombin causes translocation and significant phosphorylation of nonmuscle filamin (ABP-280), which was attenuated by KN-93, whereas thrombin-induced myosin light chain phosphorylation was unaffected. Furthermore, a cell-permeable N-myristoylated synthetic filamin peptide (containing the COOH-terminal CaM kinase II phosphorylation site) attenuated both thrombin-induced filamin phosphorylation and decreases in TER. Together, these studies indicate that CaM kinase II activation and filamin phosphorylation may participate in thrombin-induced cytoskeletal reorganization and endothelial barrier dysfunction.  相似文献   

10.
11.
Previous studies have described a protective effect of atrial natriuretic peptide (ANP) against agonist-induced permeability in endothelial cells derived from various vascular beds. In the current study, we assessed the effects of the three natriuretic peptides on thrombin-induced barrier dysfunction in rat lung microvascular endothelial cells (LMVEC). Both ANP and brain natriuretic peptide (BNP) attenuated the effect of thrombin on increased endothelial monolayer permeability and significantly enhanced the rate of barrier restoration. C-type natriuretic peptide (CNP) had no effect on the degree of thrombin-induced monolayer permeability, but did enhance the restoration of the endothelial barrier, similar to ANP and BNP. In contrast, the non-guanylyl cyclase-linked natriuretic peptide receptor specific ligand, cyclic-atrial natriuretic factor (c-ANF), delayed the rate of barrier restoration following exposure to thrombin. All three natriuretic peptides promoted cGMP production in the endothelial cells; however, 8-bromo-cGMP alone did not significantly affect thrombin modulation of endothelial barrier function. ANP and BNP, but not CNP or c-ANF, blunted thrombin-induced RhoA GTPase activation. We conclude that ANP and BNP protect against thrombin-induced barrier dysfunction in the pulmonary microcirculation by a cGMP-independent mechanism, possibly by attenuation of RhoA activation.  相似文献   

12.
Protein kinase C-potentiated phosphatase inhibitor of 17 kDa (CPI-17) mediates some agonist-induced smooth muscle contraction by suppressing the myosin phosphatase in a phosphorylation-dependent manner. The physiologically relevant kinases that phosphorylate CPI-17 remain to be identified. Several previous studies have shown that some agonist-induced CPI-17 phosphorylation in smooth muscle tissues was attenuated by the Rho kinase (ROCK) inhibitor Y-27632, suggesting that ROCK is involved in agonist-induced CPI-17 phosphorylation. However, Y-27632 has recently been found to inhibit protein kinase C (PKC)-, a well-recognized CPI-17 kinase. Thus the role of ROCK in agonist-induced CPI-17 phosphorylation remains uncertain. The present study was designed to address this important issue. We selectively activated the RhoA pathway using inducible adenovirus-mediated expression of a constitutively active mutant RhoA (V14RhoA) in primary cultured rabbit aortic vascular smooth muscle cells (VSMCs). V14RhoA caused expression level-dependent CPI-17 phosphorylation at Thr38 as well as myosin phosphatase phosphorylation at Thr853. Importantly, we have shown that V14RhoA-induced CPI-17 phosphorylation was not affected by the PKC inhibitor GF109203X but was abolished by Y-27632, suggesting that ROCK but not PKC was involved. Furthermore, we have shown that the contractile agonists thrombin and U-46619 induced CPI-17 phosphorylation in VSMCs. Similarly to V14RhoA-induced CPI-17 phosphorylation, thrombin-induced CPI-17 phosphorylation was not affected by inhibition of PKC with GF109203X, but it was blocked by inhibition of RhoA with adenovirus-mediated expression of exoenzyme C3 as well as by Y-27632. Taken together, our present data provide the first clear evidence indicating that ROCK is responsible for thrombin- and U-46619-induced CPI-17 phosphorylation in primary cultured VSMCs. protein kinase C; signal transduction; adenovirus  相似文献   

13.
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKbeta). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and Gq-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKKbeta using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKKbeta was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKKbeta or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKKbeta dependent and one AMP/LKB1 dependent.  相似文献   

14.
The ubiquitously expressed heterotrimeric guanine nucleotide-binding proteins (G-proteins) G12 and G13 have been shown to activate the small GTPase Rho. Rho stimulation leads to a rapid remodeling of the actin cytoskeleton and subsequent stress fiber formation. We investigated the involvement of G12 or G13 in stress fiber formation induced through a variety of Gq/G11-coupled receptors. Using fibroblast cell lines derived from wild-type and Galphaq/Galpha11-deficient mice, we show that agonist-dependent activation of the endogenous receptors for thrombin or lysophosphatidic acid and of the heterologously expressed bradykinin B2, vasopressin V1A, endothelin ETA, and serotonin 5-HT2C receptors induced stress fiber formation in either the presence or absence of Galphaq/Galpha11. Stress fiber assembly induced through the muscarinic M1 and the metabotropic glutamate subtype 1alpha receptors was dependent on Gq/G11 proteins. The activation of the Gq/G11-coupled endothelin ETB and angiotensin AT1A receptors failed to induce stress fiber formation. Lysophosphatidic acid, B2, and 5-HT2C receptor-mediated stress fiber formation was dependent on Galpha13 and involved epidermal growth factor (EGF) receptors, whereas thrombin, ETA, and V1A receptors induced stress fiber accumulation via Galpha12 in an EGF receptor-independent manner. Our data demonstrate that many Gq/G11-coupled receptors induce stress fiber assembly in the absence of Galphaq and Galpha11 and that this involves either a Galpha12 or a Galpha13/EGF receptor-mediated pathway.  相似文献   

15.
The RhoA effector mDia1 is involved in controlling the balance between filamentous and monomeric actin, but its role in modulating thrombin-induced actin remodeling and platelet spreading on fibrinogen matrices remains unclear. In this study, mDia1 was shown to translocate to the platelet cytoskeleton following thrombin stimulation, in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner. Anti-mDia1 loading or pretreatment with PI 3-kinase inhibitors essentially abrogated thrombin-elicited actin stress fiber formation, with a corresponding decrease in the proportion of platelets exhibiting a fully spread morphology. We also investigated the mechanisms underlying the effects of mDia1 on thrombin-induced actin remodeling and platelet spreading, and found that these involved PI 3-kinase-mediated induction of mDia1 interaction with RhoA. Collectively, these results suggest that the PI 3-kinase/RhoA/mDia1 axis is a critical pathway for coupling thrombin signaling to actin cytoskeletal remodeling during platelet spreading.  相似文献   

16.
RhoA/Rho kinase (ROCK) signaling plays a key role in the pathogenesis of experimental pulmonary hypertension (PH). Dehydroepiandrosterone (DHEA), a naturally occurring steroid hormone, effectively inhibits chronic hypoxic PH, but the responsible mechanisms are unclear. This study tested whether DHEA was also effective in treating monocrotaline (MCT)-induced PH in left pneumonectomized rats and whether inhibition of RhoA/ROCK signaling was involved in the protective effect of DHEA. Three weeks after MCT injection, pneumonectomized rats developed PH with severe vascular remodeling, including occlusive neointimal lesions in pulmonary arterioles. In lungs from these animals, we detected cleaved (constitutively active) ROCK I as well as increases in activities of RhoA and ROCK and increases in ROCK II protein expression. Chronic DHEA treatment (1%, by food for 3 wk) markedly inhibited the MCT-induced PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 33+/-5 and 16+/-1 mmHg, respectively) and severe pulmonary vascular remodeling in pneumonectomized rats. The MCT-induced changes in RhoA/ROCK-related protein expression were nearly normalized by DHEA. A 3-wk DHEA treatment (1%) started 3 wk after MCT injection completely inhibited the progression of PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 47+/-3 and 30+/-3 mmHg, respectively), and this treatment also resulted in 100% survival in contrast to 30% in DHEA-untreated rats. These results suggest that inhibition of RhoA/ROCK signaling, including the cleavage and constitutive activation of ROCK I, is an important component of the impressive protection of DHEA against MCT-induced PH in pneumonectomized rats.  相似文献   

17.
Heterotrimeric G-proteins of the Galpha12/13 family activate Rho GTPase through the guanine nucleotide exchange factor p115RhoGEF. Because Rho activation is also dependent on protein kinase Calpha (PKCalpha), we addressed the possibility that PKCalpha can also induce Rho activation secondary to the phosphorylation of p115RhoGEF. Studies were made using human umbilical vein endothelial cells in which we addressed the mechanisms of PKCalpha-induced Rho activation and its consequences on actin cytoskeletal changes. We observed that PKCalpha associated with p115RhoGEF within 1 min of thrombin stimulation and p115RhoGEF phosphorylation was dependent on PKCalpha. Inhibition of PKCalpha-dependent p115RhoGEF phosphorylation prevented the thrombin-induced Rho activation, indicating that the response occurred downstream of PKCalpha phosphorylation of p115RhoGEF. The regulator of G-protein signaling domain of p115RhoGEF, a GTPase activating protein for G12/13, also prevented thrombin-induced Rho activation, indicating the parallel requirement of G12/13 in signaling Rho activation via p115RhoGEF. These data demonstrate a pathway of Rho activation involving PKCalpha-dependent phosphorylation of p115RhoGEF. Thus, Rho activation in endothelial cells and the subsequent actin cytoskeletal re-arrangement require the cooperative interaction of both G12/13 and PKCalpha pathways that converge at p115RhoGEF.  相似文献   

18.
Expression of the constitutively active mutant of Galpha(11) (Galpha(11)QL) induces the formation of vinculin-containing focal adhesion-like structures in HeLa cells. This was found to be inhibited by Y-27632, a specific inhibitor of Rho-associated kinases (ROCK), but not by co-expression with a dominant negative mutant of RhoA, suggesting Rho-independent activation of ROCK by Galpha(11)QL. Investigation of trypan blue exclusion and immunocytochemistry with an antibody against cleaved caspase revealed the cellular phenotype of Galpha(11)QL-expressing cells to be identical to that displayed by cells undergoing apoptosis, and the caspase inhibitor zVAD-fmk blocked all morphological changes induced by Galpha(11)QL. Transfection of Galpha(11)QL induced cleavage of ROCK-I, and this proteolysis was also prevented by zVAD-fmk. ROCK-I C-terminally truncated at its authentic caspase sites also induced the formation of vinculin-containing focal adhesion-like structures. In addition, cleavage of ROCK-I was observed when cells overexpressing m1 muscarinic acetylcholine receptors were stimulated with carbachol. These results suggest that Galpha(11) induces proteolytic activation of ROCK-I by caspase and thereby regulates the actin cytoskeleton during apoptosis.  相似文献   

19.
Heme oxygenase-1 (HO-1), an inducible enzyme that metabolizes the heme group, is highly expressed in human Kaposi sarcoma lesions. Its expression is up-regulated by the G protein-coupled receptor from the Kaposi sarcoma-associated herpes virus (vGPCR). Although recent evidence shows that HO-1 contributes to vGPCR-induced tumorigenesis and vascular endothelial growth factor (VEGF) expression, the molecular steps that link vGPCR to HO-1 remain unknown. Here we show that vGPCR induces HO-1 expression and transformation through the Galpha(12/13) family of heterotrimeric G proteins and the small GTPase RhoA. Targeted small hairpin RNA knockdown expression of Galpha(12), Galpha(13), or RhoA and inhibition of RhoA activity impair vGPCR-induced transformation and ho-1 promoter activity. Knockdown expression of RhoA also reduces vGPCR-induced VEFG-A secretion and blocks tumor growth in a murine allograft tumor model. NIH-3T3 cells expressing constitutively activated Galpha(13) or RhoA implanted in nude mice develop tumors displaying spindle-shaped cells that express HO-1 and VEGF-A, similarly to vGPCR-derived tumors. RhoAQL-induced tumor growth is reduced 80% by small hairpin RNA-mediated knockdown expression of HO-1 in the implanted cells. Likewise, inhibition of HO-1 activity by chronic administration of the HO-1 inhibitor tin protoporphyrin IX to mice reduces RhoAQL-induced tumor growth by 70%. Our study shows that vGPCR induces HO-1 expression through the Galpha(12/13)/RhoA axes and shows for the first time a potential role for HO-1 as a therapeutic target in tumors where RhoA has oncogenic activity.  相似文献   

20.
ROCK mediates thrombin's endothelial barrier dysfunction   总被引:6,自引:0,他引:6  
Thrombin-induced endothelial monolayer hyperpermeability is thought toresult from increased F-actin stress fiber-related contractile tension,a process regulated by the small GTP-binding protein Rho. We testedwhether this process was dependent on the Rho-associated proteinkinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects ofY-27632 on thrombin-induced myosin light chain phosphorylation (MLCP)and tyrosine phosphorylation of p125 focal adhesion kinase(p125FAK) and paxillin were measured by Western blotting.F-actin organization and content were analyzed by digital imaging, andendothelial monolayer permeability was measured in bovine pulmonaryartery endothelial cell (EC) monolayers using a size-selectivepermeability assay. Y-27632 enhanced EC monolayer barrier function dueto a decline in small-pore number that was associated with increased ECsurface area, reduced F-actin content, and reorganization of F-actin to-catenin-containing cell-cell adherens junctions. Although Y-27632prevented thrombin-induced MLCP, stress fiber formation, and theincreased phosphotyrosine content of paxillin and p125FAK,it attenuated but did not prevent the thrombin-induced formation oflarge paracellular holes. These data indicate that thrombin-induced stress fiber formation is ROCK dependent. In contrast, thrombin-induced paracellular hole formation occurs in a ROCK-independent manner, whereas thrombin-induced monolayer hyperpermeability appears to bepartially ROCK dependent.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号