首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The endothelin/endothelin receptor system plays a critical role in the differentiation and terminal migration of particular neural crest cell subpopulations. Targeted deletion of the G-protein-coupled endothelin receptors ET(A) and ET(B) was shown to result in characteristic developmental defects of derivatives of cephalic and cardiac neural crest and of neural crest-derived melanocytes and enteric neurons, respectively. Since both endothelin receptors are coupled to G-proteins of the G(q)/G(11)- and G(12)/G(13)-families, we generated mouse lines lacking Galpha(q)/Galpha(11) or Galpha(12)/Galpha(13) in neural crest cells to study their roles in neural crest development. Mice lacking Galpha(q)/Galpha(11) in a neural crest cell-specific manner had craniofacial defects similar to those observed in mice lacking the ET(A) receptor or endothelin-1 (ET-1). However, in contrast to ET-1/ET(A) mutant animals, cardiac outflow tract morphology was intact. Surprisingly, neither Galpha(q)/Galpha(11)- nor Galpha(12)/Galpha(13)-deficient mice showed developmental defects seen in animals lacking either the ET(B) receptor or its ligand endothelin-3 (ET-3). Interestingly, Galpha(12)/Galpha(13) deficiency in neural crest cell-derived cardiac cells resulted in characteristic cardiac malformations. Our data show that G(q)/G(11)- but not G(12)/G(13)-mediated signaling processes mediate ET-1/ET(A)-dependent development of the cephalic neural crest. In contrast, ET-3/ET(B)-mediated development of neural crest-derived melanocytes and enteric neurons appears to involve G-proteins different from G(q)/G(11)/G(12)/G(13).  相似文献   

2.
Heterotrimeric G proteins typically localize at the cytoplasmic face of the plasma membrane where they interact with heptahelical receptors. For G protein alpha subunits, multiple membrane targeting signals, including myristoylation, palmitoylation, and interaction with betagamma subunits, facilitate membrane localization. Here we show that an additional membrane targeting signal, an N-terminal polybasic region, plays a key role in plasma membrane localization of non-myristoylated alpha subunits. Mutations of N-terminal basic residues in alpha(s) and alpha(q) caused defects in plasma membrane localization, as assessed through immunofluorescence microscopy and biochemical fractionations. In alpha(s), mutation of four basic residues to glutamine was sufficient to cause a defect, whereas in alpha(q) a defect in membrane localization was not observed unless nine basic residues were mutated to glutamine or if three basic residues were mutated to glutamic acid. betagamma co-expression only partially rescued the membrane localization defects; thus, the polybasic region is also important in the context of the heterotrimer. Introduction of a site for myristoylation into the polybasic mutants of alpha(s) and alpha(q) recovered strong plasma membrane localization, indicating that myristoylation and polybasic motifs may have complementary roles as membrane targeting signals. Loss of plasma membrane localization coincided with defects in palmitoylation. The polybasic mutants of alpha(s) and alpha(q) were still capable of assuming activated conformations and stimulating second messenger production, as demonstrated through GST-RGS4 interaction assays, cAMP assays, and inositol phosphate assays. Electrostatic interactions with membrane lipids have been found to be important in plasma membrane targeting of many proteins, and these results provide evidence that basic residues play a role in localization of G protein alpha subunits.  相似文献   

3.
4.
Scratch-wound assays are frequently used to study directed cell migration, a process critical for embryogenesis, invasion, and tissue repair. The function and identity of trimeric G-proteins in cell behavior during wound healing is not known. Here we show that Galpha12/13, but not Galphaq/11 or Galphai, is indispensable for coordinated and directed cell migration. In mouse embryonic fibroblasts endogenous Rho activity is present at the rear of migrating cells but also at the leading edge, whereas it is undetectable at the cell front of Galpha12/13-deficient mouse embryonic fibroblasts. Spatial activation of Rho at the wound edge can be stimulated by lysophosphatidic acid. Active Rho colocalizes with the diaphanous-related formin Dia1 at the cell front. Galpha12/13-deficient cells lack Dia1 localization to the wound edge and are unable to form orientated, stable microtubules during wound healing. Knock down of Dia1 reveals its requirement for microtubule stabilization as well as polarized cell migration. Thus, we identified Galpha12/13-proteins as essential components linking extracellular signals to localized Rho-Dia1 function during directed cell movement.  相似文献   

5.
Regulation of cell polarity is a process observed in all cells. During directed migration, cells orientate their microtubule cytoskeleton and the microtubule-organizing-center (MTOC), which involves integrins and downstream Cdc42 and glycogen synthase kinase-3beta activity. However, the contribution of G protein-coupled receptor signal transduction for MTOC polarity is less well understood. Here, we report that the heterotrimeric Galpha(12) and Galpha(13) proteins are necessary for MTOC polarity and microtubule dynamics based on studies using Galpha(12/13)-deficient mouse embryonic fibroblasts. Cell polarization involves the Galpha(12/13)-interacting leukemia-associated RhoGEF (LARG) and the actin-nucleating diaphanous formin mDia1. Interestingly, LARG associates with pericentrin and localizes to the MTOC and along microtubule tracks. We propose that Galpha(12/13) proteins exert essential functions linking extracellular signals to microtubule dynamics and cell polarity via RhoGEF and formin activity.  相似文献   

6.
Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show--for the first time--that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis.  相似文献   

7.
8.
RGS proteins (regulators of G protein signaling) attenuate heterotrimeric G protein signaling by functioning as both GTPase-activating proteins (GAPs) and inhibitors of G protein/effector interaction. RGS2 has been shown to regulate Galpha(q)-mediated inositol lipid signaling. Although purified RGS2 blocks PLC-beta activation by the nonhydrolyzable GTP analog guanosine 5'-O-thiophosphate (GTPgammaS), its capacity to regulate inositol lipid signaling under conditions where GTPase-promoted hydrolysis of GTP is operative has not been fully explored. Utilizing the turkey erythrocyte membrane model of inositol lipid signaling, we investigated regulation by RGS2 of both GTP and GTPgammaS-stimulated Galpha(11) signaling. Different inhibitory potencies of RGS2 were observed under conditions assessing its activity as a GAP versus as an effector antagonist; i.e. RGS2 was a 10-20-fold more potent inhibitor of aluminum fluoride and GTP-stimulated PLC-betat activity than of GTPgammaS-promoted PLC-betat activity. We also examined whether RGS2 was regulated by downstream components of the inositol lipid signaling pathway. RGS2 was phosphorylated by PKC in vitro to a stoichiometry of approximately unity by both a mixture of PKC isozymes and individual calcium and phospholipid-dependent PKC isoforms. Moreover, RGS2 was phosphorylated in intact COS7 cells in response to PKC activation by 4beta-phorbol 12beta-myristate 13alpha-acetate and, to a lesser extent, by the P2Y(2) receptor agonist UTP. In vitro phosphorylation of RGS2 by PKC decreased its capacity to attenuate both GTP and GTPgammaS-stimulated PLC-betat activation, with the extent of attenuation correlating with the level of RGS2 phosphorylation. A phosphorylation-dependent inhibition of RGS2 GAP activity was also observed in proteoliposomes reconstituted with purified P2Y(1) receptor and Galpha(q)betagamma. These results identify for the first time a phosphorylation-induced change in the activity of an RGS protein and suggest a mechanism for potentiation of inositol lipid signaling by PKC.  相似文献   

9.
An imbalance between thrombin and antithrombin III contributed to vascular hyporeactivity in sepsis, which can be attributed to excess NO production by inducible nitric-oxide synthase (iNOS). In view of the importance of the thrombin-activated coagulation pathway and excess NO as the culminating factors in vascular hyporeactivity, this study investigated the effects of thrombin on the induction of iNOS and NO production in macrophages. Thrombin induced iNOS protein in the Raw264.7 cells, which was inhibited by a thrombin inhibitor, LB30057. Thrombin increased NF-kappaB DNA binding, whose band was supershifted with anti-p65 and anti-p50 antibodies. Thrombin elicited the phosphorylation and degradation of I-kappaBalpha prior to the nuclear translocation of p65. The NF-kappaB-mediated iNOS induction was stimulated by the overexpression of activated mutants of Galpha(12/13) (Galpha(12/13)QL). Protein kinase C depletion inhibited I-kappaBalpha degradation, NF-kappaB activation, and iNOS induction by thrombin or the iNOS induction by Galpha(12/13)QL. JNK, p38 kinase, and ERK were all activated by thrombin. JNK inhibition by the stable transfection with a dominant negative mutant of JNK1 (JNK1(-)) completely suppressed the NF-kappaB-mediated iNOS induction by thrombin. Conversely, the inhibition of p38 kinase enhanced the expression of iNOS. In addition, JNK and p38 kinase oppositely controlled the NF-kappaB-mediated iNOS induction by Galpha(12/13)QL. Hence, iNOS induction by thrombin was regulated by the opposed functions of JNK and p38 kinase downstream of Galpha(12/13). In the JNK1(-) cells, thrombin did not increase either the NF-kappaB binding activity or I-kappaBalpha degradation despite I-kappaBalpha phosphorylation. These results demonstrated that thrombin induces iNOS in macrophages via Galpha(12) and Galpha(13), which leads to NF-kappaB activation involving the protein kinase C-dependent phosphorylation of I-kappaBalpha and the JNK-dependent degradation of phosphorylated I-kappaBalpha.  相似文献   

10.
Endothelin (ET), a potent stimulator of atrial natriuretic factor (ANF) secretion in atrial myocyte cultures, has been hypothesized to act via the stimulation of protein kinase C (PKC). This study was carried out in order to determine if ET activates PKC in atrial cultures and whether this activation fully accounts for the effects of ET on ANF secretion. By monitoring the phosphorylation of p80 upon exposure to phorbol ester or ET, it was shown that ET activated PKC in atrial cultures, but to a lesser extent than phorbol ester. In contrast, ET stimulated ANF secretion to a level five times greater than phorbol ester, indicating that PKC activation alone does not fully account for the effects of ET on ANF secretion. Down-regulation of PKC or exposure to the PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) resulted in a 50% decrease in ET-stimulated ANF secretion. Interestingly, increasing calcium influx with BAY K 8644 stimulated ANF secretion but did not effect the phosphorylation of p80, indicating a PKC-independent pathway of ANF secretion. Similarly, a component of ET-stimulated secretion that required calcium influx was independent of PKC activation but was sensitive to the Ca2+/calmodulin kinase (CaMK) inhibitor KN-62. Complete inhibition of ET-mediated ANF secretion was obtained only in the presence of both H7 and KN-62. These results demonstrate that ET activates PKC in atrial myocyte cultures and that the full effects of ET on ANF secretion require both PKC and Ca2+/calmodulin kinase activities.  相似文献   

11.
12.
J Mao  W Xie  H Yuan  M I Simon  H Mano    D Wu 《The EMBO journal》1998,17(19):5638-5646
A transient transfection system was used to identify regulators and effectors for Tec and Bmx, members of the Tec non-receptor tyrosine kinase family. We found that Tec and Bmx activate serum response factor (SRF), in synergy with constitutively active alpha subunits of the G12 family of GTP-binding proteins, in transiently transfected NIH 3T3 cells. The SRF activation is sensitive to C3, suggesting the involvement of Rho. The kinase and Tec homology (TH) domains of the kinases are required for SRF activation. In addition, kinase-deficient mutants of Bmx are able to inhibit Galpha13- and Galpha12-induced SRF activation, and to suppress thrombin-induced SRF activation in cells lacking Galphaq/11, where thrombin's effect is mediated by G12/13 proteins. Moreover, expression of Galpha12 and Galpha13 stimulates autophosphorylation and transphosphorylation activities of Tec. Thus, the evidence indicates that Tec kinases are involved in Galpha12/13-induced, Rho-mediated activation of SRF. Furthermore, Src, which was previously shown to activate kinase activities of Tec kinases, activates SRF predominantly in Rho-independent pathways in 3T3 cells, as shown by the fact that C3 did not block Src-mediated SRF activation. However, the Rho-dependent pathway becomes significant when Tec is overexpressed.  相似文献   

13.
T Toda  M Shimanuki    M Yanagida 《The EMBO journal》1993,12(5):1987-1995
Two novel protein kinase C (PKC)-like genes, pck1+ and pck2+ were isolated from fission yeast by PCR. Both contain common domains of PKC-related molecules, but lack a putative Ca(2+)-binding domain so that they may belong to the nPKC group. Gene disruption of pck1+ and pck2+ establishes that they share an overlapping essential function for cell viability. Cells of a single pck2 deletion display severe defects in cell shape; they are irregular and sometimes pear-like instead of cylindrical. In contrast, the induced overexpression of pck2+ is lethal, producing multiseptated and branched cells. These results suggest that fission yeast PKC-like genes are involved in the polarity of cell growth control. We show that pck2 is allelic to sts6, a locus we have previously identified by its supersensitivity to staurosporine, a potent protein kinase inhibitor [Toda et al. (1991) Genes Dev., 5, 60-73]. In addition, the lethal overexpression of pck2+ can be suppressed by staurosporine, indicating that fission yeast pck1 and pck2 are molecular targets of this inhibitor.  相似文献   

14.
Infection of erythroid progenitor cells by Friend spleen focus-forming virus (SFFV) leads to acute erythroid hyperplasia and eventually to erythroleukemia in susceptible strains of mice. The viral envelope protein, SFFV gp55, forms a complex with the erythropoietin receptor (EpoR) and a short form of the receptor tyrosine kinase Stk (sf-Stk), activating both and inducing Epo-independent proliferation. Recently, we discovered that coexpression of SFFV gp55 and sf-Stk is sufficient to transform NIH 3T3 and primary fibroblasts. In the current study, we demonstrate that sf-Stk and its downstream effectors are critical to this transformation. Unlike SFFV-derived erythroleukemia cells, which depend on PU.1 expression for maintenance of the transformed phenotype, SFFV gp55-sf-Stk-transformed fibroblasts are negative for PU.1. Underscoring the importance of sf-Stk to fibroblast transformation, knockdown of sf-Stk abolished the ability of these cells to form anchorage-independent colonies. Like SFFV-infected erythroid cells, SFFV gp55-sf-Stk-transformed fibroblasts express high levels of phosphorylated MEK, ERK, phosphatidylinositol 3-kinase (PI3K), Gab1/2, Akt, Jun kinase (JNK), and STAT3, but unlike virus-infected erythroid cells they fail to express phosphorylated STATs 1 and 5, which may require involvement of the EpoR. In addition, the p38 mitogen-activated protein kinase (MAPK) stress response is suppressed in the transformed fibroblasts. Inhibition of either JNK or the PI3K pathway decreases both monolayer proliferation and anchorage-independent growth of the transformed fibroblasts as does the putative kinase inhibitor luteolin, but inhibition of p38 MAPK has no effect. Our results indicate that sf-Stk is a molecular endpoint of transformation that could be targeted directly or with agents against its downstream effectors.  相似文献   

15.
16.
Human bone marrow mesenchymal stem cells (hMSCs) have the potential to differentiate into tendon/ligament-like lineages when they are subjected to mechanical stretching. However, the means through which mechanical stretch regulates the tenogenic differentiation of hMSCs remains unclear. This study examined the role of RhoA/ROCK, cytoskeletal organization, and focal adhesion kinase (FAK) in mechanical stretch-induced tenogenic differentiation characterized by the up-regulation of tendon-related marker gene expression. Our findings showed that RhoA/ROCK and FAK regulated mechanical stretch-induced realignment of hMSCs by regulating cytoskeletal organization and that RhoA/ROCK and cytoskeletal organization were essential to mechanical stretch-activated FAK phosphorylation at Tyr397. We also demonstrated that this process can be blocked by Y-27632 (a specific inhibitor of RhoA/ROCK), cytochalasin D (an inhibitor of cytoskeletal organization) or PF 573228 (a specific inhibitor of FAK). The results of this study suggest that RhoA/ROCK, cytoskeletal organization, and FAK compose a "signaling network" that senses mechanical stretching and drives mechanical stretch-induced tenogenic differentiation of hMSCs. This work provides novel insights regarding the mechanisms of tenogenesis in a stretch-induced environment and supports the therapeutic potential of hMSCs.  相似文献   

17.
Cytoskeletal protein (CSP) interactions are critical to the contractile response in muscle and non-muscle cells. Current concepts suggest that activation of the contractile apparatus occurs through selective phosphorylation by specific cellular kinase systems. Because the Ca(2+)-phospholipid-dependent protein kinase C (PKC) is involved in the regulation of a number of key endothelial cell responses, the hypothesis that PKC modulates endothelial cell contraction and monolayer permeability was tested. Phorbol myristate acetate (PMA), a direct PKC activator, and alpha-thrombin, a receptor-mediated agonist known to increase endothelial cell permeability, both induced rapid, dose-dependent activation and translocation of PKC in bovine pulmonary artery endothelial cells (BPAEC), as assessed by gamma-[32P]ATP phosphorylation of H1 histone in cellular fractions. This activation was temporally associated with evidence of agonist-mediated endothelial cell contraction as demonstrated by characteristic changes in cellular morphology. Agonist-induced activation of the contractile apparatus was associated with increases in BPAEC monolayer permeability to albumin (approximately 200% increase with 10(-6) MPMA, approximately 400% increase with 10(-8) M alpha-thrombin). To more closely examine the role of PKC in activation of the contractile apparatus, PKC-mediated phosphorylation of two specific CSPs, the actin- and calmodulin-binding protein, caldesmon77, and the intermediate filament protein, vimentin, was assessed. In vitro phosphorylation of both caldesmon and vimentin was demonstrated by addition of exogenous, purified BPAEC PKC to unstimulated BPAEC homogenates, to purified bovine platelet caldesmon77, or to purified smooth muscle caldesmon150. Caldesmon77 and vimentin phosphorylation were observed in intact [32P]-labeled BPAEC monolayers stimulated with either PMA or alpha-thrombin, as detected by immunoprecipitation. In addition, BPAEC pretreatment with the PKC inhibitor, staurosporine, prevented alpha-thrombin- and PMA-induced phosphorylation of both cytoskeletal proteins, attenuated morphologic evidence of contraction, and abolished agonist-induced barrier dysfunction. These results demonstrate that agonist-stimulated PKC activity results in cytoskeletal protein phosphorylation in BPAEC monolayer, an event which occurs in concert with agonist-mediated endothelial cell contraction and resultant barrier dysfunction.  相似文献   

18.
Activation of Akt by multiple stimuli including B cell antigen receptor (BCR) engagement requires phosphatidylinositol 3-kinase and regulates processes including cell survival, proliferation, and metabolism. BCR cross-linking activates three families of non-receptor protein tyrosine kinases (PTKs) and these are transducers of signaling events including phospholipase C and mitogen-activated protein kinase activation; however, the relative roles of PTKs in BCR-mediated Akt activation are unknown. We examined Akt activation in Lyn-, Syk- and Btk-deficient DT40 cells and B cells from Lyn(-/-) mice. BCR-mediated Akt activation required Syk and was partially dependent upon Btk. Increased BCR-induced Akt phosphorylation was observed in Lyn-deficient DT40 cells and Lyn(-/-) mice compared with wild-type cells suggesting that Lyn may negatively regulate Akt function. BCR-induced tyrosine phosphorylation of the phosphatidylinositol 3-kinase catalytic subunit was abolished in Syk-deficient cells consistent with a receptor-proximal role for Syk in BCR-mediated phosphatidylinositol 3-kinase activation; in contrast, it was maintained in Btk-deficient cells, suggesting Btk functions downstream of phosphatidylinositol 3-kinase. Calcium depletion did not influence BCR-induced Akt phosphorylation/activation, showing that neither Syk nor Btk mediates its effects via changes in calcium levels. Thus, BCR-mediated Akt stimulation is regulated by multiple non-receptor PTK families which regulate Akt both proximal and distal to phosphatidylinositol 3-kinase activation.  相似文献   

19.
Bacaj T  Lu Y  Shaham S 《Genetics》2008,178(2):989-1002
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function.  相似文献   

20.
The Saccharomyces cerevisiae Ssn6 and Tup1 proteins form a corepressor complex that is recruited to target genes by DNA-bound repressor proteins. Repression occurs via several mechanisms, including interaction with hypoacetylated N termini of histones, recruitment of histone deacetylases (HDACs), and interactions with the RNA polymerase II holoenzyme. The distantly related fission yeast, Schizosaccharomyces pombe, has two partially redundant Tup1-like proteins that are dispensable during normal growth. In contrast, we show that Ssn6 is an essential protein in S. pombe, suggesting a function that is independent of Tup11 and Tup12. Consistently, the group of genes that requires Ssn6 for their regulation overlaps but is distinct from the group of genes that depend on Tup11 or Tup12. Global chip-on-chip analysis shows that Ssn6 is almost invariably found in the same genomic locations as Tup11 and/or Tup12. All three corepressor subunits are generally bound to genes that are selectively regulated by Ssn6 or Tup11/12, and thus, the subunit specificity is probably manifested in the context of a corepressor complex containing all three subunits. The corepressor binds to both the intergenic and coding regions of genes, but differential localization of the corepressor within genes does not appear to account for the selective dependence of target genes on the Ssn6 or Tup11/12 subunits. Ssn6, Tup11, and Tup12 are preferentially found at genomic locations at which histones are deacetylated, primarily by the Clr6 class I HDAC. Clr6 is also important for the repression of corepressor target genes. Interestingly, a subset of corepressor target genes, including direct target genes affected by Ssn6 overexpression, is associated with the function of class II (Clr3) and III (Hst4 and Sir2) HDACs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号