首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Protein Z (PZ) is a multidomain vitamin K-dependent plasma protein that functions as a cofactor to promote the inactivation of factor Xa (fXa) by PZ-dependent protease inhibitor (ZPI) by three orders of magnitude. To understand the mechanism by which PZ improves the reactivity of fXa with ZPI, we expressed wild-type PZ, PZ lacking the gamma-carboxyglutamic acid domain (GD-PZ), and a chimeric PZ mutant in which both Gla and EGF-like domains of the molecule were substituted with identical domains of fXa. The ZPI binding and the cofactor function of the PZ derivatives were characterized in both binding and kinetic assays. The binding assay indicated that all PZ derivatives interact with ZPI with a similar dissociation constant (K(D)) of approximately 7 nm. However, the apparent K(D) for the chimeric PZ-mediated ZPI inhibition of fXa was elevated 6-fold on PC/PS vesicles and its capacity to function as a cofactor to accelerate the ZPI inhibition of fXa was also decreased 6-fold. The cofactor activity of GD-PZ was dramatically impaired; however, the deletion mutant exhibited a normal cofactor function in solution. A chimeric activated protein C mutant containing the Gla domain of fXa was susceptible to inhibition by ZPI in the presence of PZ. These results suggest that: (i) the ZPI interactive site of PZ is located within the C-terminal domain of the cofactor and (ii) a specific interaction between the Gla domains of PZ and fXa contributes approximately 6-fold to the acceleration of the ZPI inhibition of fXa on phospholipid membranes.  相似文献   

2.
Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent, factor Xa (fXa)-dependent small protein inhibitor of factor VIIa-tissue factor (fVIIa.TF), which binds to a site on fXa that is distinct from the catalytic center (exo-site). In the present study, the role of other fX derivatives in presenting rNAPc2 to fVIIa.TF is investigated. Catalytically active and active site blocked fXa, as well as a plasma-derived and an activation-resistant mutant of zymogen fX bound to rNAPc2 with comparable affinities (K(D) = 1-10 nm), and similarly supported the inhibition of fVIIa.TF (K(i)* = approximately 10 pm). The roles of phospholipid membrane composition in the inhibition of fVIIa.TF by rNAPc2 were investigated using TF that was either detergent-solubilized (TF(S)), or reconstituted into membranes, containing phosphatidylcholine (TF(PC)) or a mixture of phosphatidylcholine and phosphatidylserine (TF(PCPS)). In the absence of the fX derivative, inhibition of fVIIa.TF was similar for all three conditions (K(i) approximately 1 microm), whereas the addition of the fX derivative increased the respective inhibition by 35-, 150-, or 100,000-fold for TF(S), TF(PC), and TF(PCPS). The removal of the gamma-carboxyglutamic acid-containing domain from the fX derivative did not affect the binding to rNAPc2, but abolished the effect of factor Xa as a scaffold for the inhibition of fVIIa.TF by rNAPc2. The overall anticoagulant potency of rNAPc2, therefore, results from a coordinated recognition of an exo-site on fX/fXa and of the active site of fVIIa, both of which are properly positioned in the ternary fVIIa.TF.fX(a) complex assembled on an appropriate phospholipid surface.  相似文献   

3.
The effect of glucosylceramide (GlcCer) on activated protein C (APC)-phospholipid interactions was examined using fluorescence resonance energy transfer. Human APC, labeled with either fluorescein (Fl-APC) or dansyl (DEGR-APC) donor, bound to phosphatidylcholine/phosphatidylserine (PC/PS, 9:1 w/w) vesicles containing octadecylrhodamine (OR) acceptor with a K(d) (app) = 16 micro g/ml, whereas Fl-APC (or DEGR-APC) bound to PC/PS/GlcCer(OR) (8:1:1) vesicles with a K(d) (app) = 3 micro g/ml. This 5-fold increase in apparent affinity was not species-specific since bovine DEGR-APC also showed a similar GlcCer-dependent enhancement of binding of APC to PC/PS vesicles. From the efficiency of fluorescence resonance energy transfer, distances of closest approach of approximately 63 and approximately 64 A were estimated between the dansyl on DEGR-APC and rhodamine in PC/PS/GlcCer(OR) and PC/PS(OR), respectively, assuming kappa(2) = 2/3. DEGR-APC bound to short chain C8-GlcCer with an apparent K(d) of 460 nm. The presence of C8-GlcCer selectively enhanced the binding of C16,6-NBD-phosphatidylserine but not C16,6-7-nitrobenz-2-oxa-1,3-diazole (NBD)-phosphatidylcholine to coumarin-labeled APC. These data suggest that APC binds to GlcCer, that PC/PS/GlcCer vesicles like PC/PS vesicles bind to the N-terminal gamma-carboxyglutamic acid domain of APC, and that one mechanism by which GlcCer enhances the activity of APC is by increasing its affinity for membrane surfaces containing negatively charged phospholipids.  相似文献   

4.
The topography of membrane-bound blood coagulation factor IXa (fIXa) and the nature of its interaction with its cofactor, factor VIIIa (fVIIIa), were examined using fluorescent derivatives of fIXa. A fluorescein dye was covalently attached to the active-site histidine of fIXa via a D-Phe-Pro-Arg tripeptide tether to form Fl-A-FPR-fIXa; similarly, a 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) dye was covalently attached via Glu-Gly-Arg to form DEGR-fIXa. When either Fl-A-FPR-fIXa or DEGR-fIXa was titrated with phosphatidylcholine-phosphatidylserine vesicles containing octadecylrhodamine in the presence of Ca2+, fluorescence energy transfer was observed. Assuming a random orientation of dyes, the distance of closest approach between the donor dyes in the active sites of the membrane-bound enzymes and the acceptor dyes at the membrane surface was found to be 89 +/- 3 A for Fl-A-FPR-fIXa and 73 +/- 4 A for DEGR-fIXa. Although the exact distance remains uncertain, it is clear that the active site of fIXa is positioned more than 70 A above the surface, and hence that the elongated fIXa molecule projects approximately perpendicularly from the surface when bound to the membrane. The binding of fVIIIa to membrane-bound Fl-A-FPR-fIXa or DEGR-fIXa did not alter the location of the active site relative to the membrane surface, but did alter both the emission intensity and anisotropy of the fluorescein and dansyl probes and hence their environments. Cofactor stimulation of fIXa activity therefore appears to be mediated, at least in part, by a conformational change in the active site that occurs when fVIIIa binds to the enzyme on the phospholipid surface.  相似文献   

5.
Norledge BV  Petrovan RJ  Ruf W  Olson AJ 《Proteins》2003,53(3):640-648
Factor X is activated to factor Xa (fXa) in the extrinsic coagulation pathway by the tissue factor (TF)/factor VIIa (fVIIa) complex. Upon activation, the fXa molecule remains associated with the TF/fVIIa complex, and this ternary complex is known to activate protease-activated receptors (PARs) 1 and 2. Activation of fVII in the TF complex by fXa is also seen at physiologic concentrations. The ternary complexes TF/fVII/fXa, TF/fVIIa/fX, and TF/fVIIa/fXa are therefore all physiologically relevant and of interest as targets for inhibition of both coagulation and cell-signaling pathways that are important in cardiovascular disease and inflammation. We therefore present a model of the TF/fVIIa/fXa complex, built with the use of the available structures of the TF/fVIIa complex and fXa by protein-protein docking calculations with the program Surfdock. The fXa model has an extended conformation, similar to that of fVIIa in the TF/fVIIa complex, with extensive interactions with TF and the protease domain of fVIIa. All four domains of fXa are involved in the interaction. The gamma-carboxyglutamate (Gla) and epithelial growth factor (EGF1 and EGF2) domains of fVIIa are not significantly involved in the interaction. Docking of the Gla domain of fXa to TF/fVIIa has been reported previously. The docking results identify potential interface residues, allowing rational selection of target residues for site-directed mutagenesis. This combination of docking and mutagenesis confirms that residues Glu51 and Asn57 in the EGF1 domain, Asp92 and Asp95 in the EGF2 domain, and Asp 185a, Lys 186, and Lys134 in the protease domain of factor Xa are involved in the interaction with TF/fVIIa. Other fX protease domain residues predicted to be involved in the interaction come from the 160s loop and the N-terminus of the fX protease domain, which is oriented in such a way that activation of both fVII by fXa, and the reciprocal fX activation by fVIIa, is possible.  相似文献   

6.
Human plasma protein S is a nonenzymatic cofactor for activated protein C (APC) in the inactivation of coagulation factors Va and VIIIa, and helps to provide an essential negative feedback on blood coagulation. Previous indirect evidence suggested that the thrombin-sensitive region (TSR:residues 47–75, 1 disulfide) and the first epidermal growth factorlike region (EGF1: residues 76–116, 3 disulfides) of protein S may be functionally important for expression of its APC cofactor activity. To study the functional importance of these modules directly, access to the isolated TSR and EGF1 modules would be preferred. Recombinant expression of protein S intact TSR and correctly folded EGF1 has not been possible. Here we describe the synthesis of both TSR and EGF1 modules by stepwise solid phase peptide synthesis using the in situ neutralization/2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate activation procedure for tert-butoxycarbonyl chemistry. For the TSR, correct intramodular disulfide bonding was confirmed. To overcome folding difficulties with the EGF1, a two-step oxidation procedure was used in which the cysteines involved in the middle, crossing, disulfide bond (Cys85-Cys102) remained protected with acetamidomethyl (Acm) groups after hydrogen fluoride treatment of the peptide resin. Selective formation of the first two disulfide bonds (Cys80-Cys93 and Cys104-Cys113) was followed by release of the Acm groups and subsequent formation of the third disulfide bond (Cys85-Cys102). CD studies revealed 54% of β-sheet/turn in the EGF1 that is characteristic for EGF modules. Deuterium exchange studies suggested a very tightly packed core in EGF1 that is not accessible to the bulk solvent, likely a result from the compact structure caused by its three disulfide bonds. The 30% β-sheet structure observed in the TSR involved amide protons that could be readily exchanged by deuterons, likely reflecting a more flexible structure of the TSR loop in contrast to the rigid structure of EGF1. The establishment of synthetic access to the TSR and EGF1 of protein S provides a versatile tool to study interactions of these modules with the blood coagulation components of the anticoagulant plasma protein C pathway. © 1998 John Wiley & Sons, Inc. Biopoly 46: 53–63, 1998  相似文献   

7.
FRET (fluorescence resonance energy transfer) studies have shown that the vitamin K-dependent coagulation proteases bind to membrane surfaces perpendicularly, positioning their active sites above the membrane surfaces. To investigate whether EGF (epidermal growth factor) domains of these proteases play a spacer function in this model of the membrane interaction, we used FRET to measure the distance between the donor fluorescein dye in the active sites of Fl-FPR (fluorescein-D-Phe-Pro-Arg-chloromethane)-inhibited fXa (activated Factor Xa) and its N-terminal EGF deletion mutant (fXa-desEGF1), and the acceptor OR (octadecylrhodamine) dye incorporated into phospholipid vesicles composed of 80% phosphatidylcholine and 20% phosphatidylserine. The average distance of closest approach (L) between fluorescein in the active site and OR at the vesicle surface was determined to be 56+/-1 A (1 A=0.1 nm) and 63+/-1 A for fXa-desEGF1 compared with 72+/-2 A and 75+/-1 A for fXa, in the absence and presence of fVa (activated Factor V) respectively, assuming kappa2=2/3. In comparison, an L value of 95+/-6 A was obtained for a S195C mutant of fXa in the absence of fVa in which fluorescein was attached directly to Cys(195) of fXa. These results suggest that (i) EGF1 plays a spacer function in holding the active site of fXa above the membrane surface, (ii) the average distance between fluorescein attached to Fl-FPR in the active site of fXa and OR at the vesicle surface may not reflect the actual distance of the active-site residue relative to the membrane surface, and (iii) fVa alters the orientation and/or the height of residue 195 above the membrane surface.  相似文献   

8.
In our previous study (A. Balogh et al, Cell. Signalling 5 (6), 795-802, 1993.), we have shown that epidermal growth factor (EGF) increased protein kinase C (PKC) activities in colon carcinoma cell line (HT29), possibly through the increased 1,2-diacylglycerol (1,2-DAG) production via phosphatidylcholine (PC). Here we investigate the effect of the well-known PKC activator 12-O-tetradecanoyl-2 phorbol-13-acetate (TPA), on the levels of 32P incorporation into EGF induced phosphatidylinositols (PI, PI4P, PI4, 5P2) and different phospholipids (PC, PA, PS) as well as on induced tyrosine kinase activity. TPA significantly decreased the effects of EGF and it had the biggest inhibitory effect on EGF induced PC level. These data support our contention that PC plays an important role in the activation of PKC via 1,2-DAG production in the EGF stimulated pathway.  相似文献   

9.
The abilities of normal and three abnormal factor IXa molecules to activate factor X and to bind to phospholipid membranes have been compared to define the contributions of protein-lipid interactions and factor IXa light chain-heavy chain interactions to the functioning of this protein. The abnormal proteins studied had altered amino acid residues in their light chains. The heavy-chain regions, containing the active site serine and histidine residues, were normal in the abnormal proteins on the basis of titration by antithrombin III. The binding constants (Kd) for normal (N), variant [Chapel Hill (CH) and Alabama (AL)], and gamma-carboxyglutamic acid (Gla) modified (MOD) factors IX and IXa to phosphatidylserine (PS)/phosphatidylcholine (PC) small, unilamellar vesicles (SUV) were measured by 90 degrees light scattering. The Kd values for factor IXN binding were quite sensitive to the PS content of the membrane but less sensitive to Ca2+ concentrations between 0.5 and 10 mM. The zymogen and activated forms of both normal and abnormal factor IX bound with similar affinities to PS/PC (30/70) SUV. In the cases of factor IXaN and factor IXaAL, but not factor IXaCH or factor IXaMOD, irreversible changes in scattering intensity suggested protein-induced vesicle fusion. Since the activation peptide is not released from factor IXaCH, the normal interaction of factor IXa with a membrane must require the release of the activation peptide and the presence of intact Gla residues. The rate of factor X activation by normal and abnormal factor IXa was obtained by using a chromogenic substrate for factor Xa in the presence of PS/PC (30/70) SUV and 5 mM Ca2+.  相似文献   

10.
Activated protein C (APC) inactivates factor Va (fVa) by proteolytically cleaving fVa heavy chain at Arg(506), Arg(306), and Arg(679). Factor Xa (fXa) protects fVa from inactivation by APC. To test the hypothesis that fXa and APC share overlapping fVa binding sites, 15 amino acid-overlapping peptides representing the heavy chain (residues 1-709) of fVa were screened for inhibition of fVa inactivation by APC. As reported, VP311-325, a peptide comprising residues 311-325 in fVa, dose-dependently and potently inhibited fVa-dependent prothrombin activation by fXa in the absence of APC. This peptide also inhibited the inactivation of fVa by APC, suggesting that this region of fVa interacts with APC. The peptide inhibited the APC-dependent cleavage of both Arg(506) and Arg(306) because inhibition was observed with plasma-derived fVa and recombinant R506Q and RR306/679QQ fVa. VP311-325 altered the fluorescence emission of dansyl-active site-labeled APC(i) but not a dansyl-active site-labeled thrombin control, showing that the peptide binds to APC(i). This peptide also inhibited the resonance energy transfer between membrane-bound fluorescein-labeled fVa (donor) and rhodamine-active site-labeled S360C-APC (acceptor). These data suggest that peptide VP311-325 represents both an APC and fXa binding region in fVa.  相似文献   

11.
Two different lipophilic photoreagents, [3H]adamantane diazirine and 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine (TID), have been utilized to examine the interactions of blood coagulation factor Va with calcium, prothrombin, factor Xa, and, in particular, phospholipid vesicles. With each of these structurally dissimilar reagents, the extent of photolabeling of factor Va was greater when the protein was bound to a membrane surface than when it was free in solution. Specifically, the covalent photoreaction with Vl, the smaller subunit of factor Va, was 2-fold higher in the presence of phosphatidylcholine/phosphatidylserine (PC/PS, 3:1) vesicles, to which factor Va binds, than in the presence of 100% PC vesicles, to which the protein does not bind. However, the magnitude of the PC/PS-dependent photolabeling was much less than has been observed previously with integral membrane proteins. It therefore appears that the binding of factor Va to the membrane surface exposes Vl to the lipid core of the bilayer, but that only a small portion of the Vl polypeptide is exposed to, or embedded in, the bilayer core. Addition of either prothrombin or active-site-blocked factor Xa to PC/PS-bound factor Va had little effect on the photolabeling of Vl with TID, but reduced substantially the covalent labeling of Vh, the larger subunit of factor Va. This indicates that prothrombin and factor Xa each cover nonpolar surfaces on Vh when the macromolecules associate on the PC/PS surface. It therefore seems likely that the formation of the prothrombinase complex involves a direct interaction between Vh and factor Xa and between Vh and prothrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We reported previously that residue 347 in activated fX (fXa) contributes to binding of the cofactor, factor Va (fVa) (Rudolph, A. E., Porche-Sorbet, R. and Miletich, J. P. (2000) Biochemistry 39, 2861-2867). Four additional residues that participate in fVa binding have now been identified by mutagenesis. All five resulting fX species, fX(R306A), fX(E310N), fX(R347N), fX(K351A), and fX(K414A), are activated and inhibited normally. However, the rate of inhibition by antithrombin III in the presence of submaximal concentrations of heparin is reduced for all the enzymes. In the absence of fVa, all of the enzymes bind and activate prothrombin similarly except fXa(E310N), which has a reduced apparent affinity ( approximately 3-fold) for prothrombin compared with wild type fXa (fXa(WT)). In the absence of phospholipid, fVa enhances the catalytic activity of fXa(WT) significantly, but the response of the variant enzymes was greatly diminished. On addition of 100 nm PC:PS (3:1) vesicles, fVa enhanced fXa(WT), fXa(R306A), and fXa(E310N) similarly, whereas fXa(R347N), fXa(K351A), and fXa(K414A) demonstrated near-normal catalytic activity but reduced apparent affinity for fVa under these conditions. All enzymes function similarly to fXa(WT) on activated platelets, which provide saturating fVa on an ideal surface. Loss of binding affinity for fVa as a result of the substitutions in residues Arg-347, Lys-351, and Lys-414 was verified by a competition binding assay. Thus, Arg-347, Lys-351, and Lys-414 are likely part of a core fVa binding site, whereas Arg-306 and Glu-310 serve a less critical role.  相似文献   

13.
Protein Z-dependent protease inhibitor (ZPI) is a plasma serpin, which can rapidly inactivate factor Xa (fXa) in the presence of protein Z (PZ), negatively charged phospholipids, and Ca2+. To investigate the mechanism by which ZPI inactivates fXa, we expressed the serpin in mammalian cells and characterized its reactivity with both wild-type and selected mutants of fXa that 1) contained substitutions in the autolysis loop and the heparin binding exosite, 2) lacked the first EGF-like domain (fXa-des-EGF-1), or 3) contained the Gla domain of protein C (fXa/PC-Gla). Inhibition studies in both the presence and absence of PZ revealed that Arg-143, Lys-147, and Arg-154 of the autolysis loop and Lys-96, Lys-169, and Lys-236 of the heparin binding exosite are required for recognition of ZPI, with Arg-143 being essential for the interaction. Similar studies with fXa-des-EGF-1 and fXa/PC-Gla suggested that protein-protein interaction with either the Gla or the EGF-1 domain may not play a dominant role in the PZ-dependent recognition of fXa by the serpin on phospholipid vesicles. Further studies showed that an inactive Ser-195 to Ala mutant of fXa effectively competes with wild-type fXa for binding to the non-serpin inhibitors tissue factor pathway inhibitor and recombinant tick anticoagulant peptide, but does not compete for binding to ZPI. This suggests that the catalytic residue of fXa is required for interaction with ZPI.  相似文献   

14.
The mechanism of binding of blood coagulation cofactor factor Va to acidic-lipid-containing membranes has been addressed. Binding isotherms were generated at room temperature using the change in fluorescence anisotropy of pyrene-labeled bovine factor Va to detect binding to sonicated membrane vesicles containing either bovine brain phosphatidylserine (PS) or 1,2-dioleoyl-3-sn-phosphatidylglycerol (DOPG) in combination with 1-palmitoyl-2-oleoyl-3-sn-phosphatidylcholine (POPC). The composition of the membranes was varied from 0 to 40 mol% for PS/POPC and from 0 to 65 mol % for DOPG/POPC membranes. Fitting the data to a classical Langmuir adsorption model yielded estimates of the dissociation constant (Kd) and the stoichiometry of binding. The values of Kd defined in this way displayed a maximum at low acidic lipid content but were nearly constant at intermediate to high fractions of acidic lipid. Fitting the binding isotherms to a two-process binding model (nonspecific adsorption in addition to binding of acidic lipids to sites on the protein) suggested a significant acidic-lipid-independent binding affinity in addition to occupancy of three protein sites that bind PS in preference to DOPG. Both analyses indicated that interaction of factor Va with an acidic-lipid-containing membrane is much more complex than those of factor Xa or prothrombin. Furthermore, a change in the conformation of bound pyrene-labeled factor Va with surface concentration of acidic lipid was implied by variation of both the saturating fluorescence anisotropy and the binding parameters with the acidic lipid content of the membrane. Finally, the results cannot support the contention that binding occurs through nonspecific adsorption to a patch or domain of acidic lipids in the membrane. Factor Va is suggested to associate with membranes by a complex process that includes both acidic-lipid-specific and acidic-lipid-independent sites and a protein structure change induced by occupancy of acidic-lipid-specific sites on the factor Va molecule.  相似文献   

15.
表皮生长因子对大鼠肺表面活性物质合成的调控及机制   总被引:4,自引:2,他引:2  
目的和方法:采用无血清成年大鼠肺组织培养,用液体闪烁计数器测定^3H-胆碱掺入磷脂酰胆碱量,消化定磷法测总磷脂,薄层层析及薄层扫描测磷脂各组分含量变化,观察生理浓度表皮生长因子对成年大鼠肺表面活性物质合成的调控。结果:①10^-9mol/L EGF作用8h后,PC合成量显著增加,16h达高峰;②EGF可显著增加总磷脂、PS特征性成分PC、PG合成(P〈0.01)。而细胞膜特征性组分PE、PSe、S  相似文献   

16.
To test whether neutral glycosphingolipids can serve as anticoagulant cofactors, the effects of incorporation of neutral glycosphingolipids into phospholipid vesicles on anticoagulant and procoagulant reactions were studied. Glucosylceramide (GlcCer), lactosylceramide (LacCer), and globotriaosylceramide (Gb(3)Cer) in vesicles containing phosphatidylserine (PS) and phosphatidylcholine (PC) dose dependently enhanced factor Va inactivation by the anticoagulant factors, activated protein C (APC) and protein S. Addition of GlcCer to PC/PS vesicles enhanced protein S-dependent APC cleavage in factor Va at Arg-506 by 13-fold, whereas PC/PS vesicles alone minimally affected protein S enhancement of this reaction. Incorporation into PC/PS vesicles of GlcCer, LacCer, or Gb(3)Cer, but not galactosylceramide or globotetraosylceramide, dose dependently prolonged factor Xa-1-stage clotting times of normal plasma in the presence of added APC without affecting baseline clotting times in the absence of APC, showing that certain neutral glycosphingolipids enhance anticoagulant but not procoagulant reactions in plasma. Thus, certain neutral glycosphingolipids (e.g. GlcCer, LacCer, and Gb(3)Cer) can enhance anticoagulant activity of APC/protein S by mechanisms that are distinctly different from those of phospholipids alone. We speculate that under some circumstances certain neutral glycosphingolipids either in lipoprotein particles or in cell membranes may help form antithrombotic microdomains that might enhance down-regulation of thrombin by APC in vivo.  相似文献   

17.
The membrane binding affinity of the pleckstrin homology (PH) domain of phospholipase C (PLC)-delta1 was investigated using a vesicle coprecipitation assay and the structure of the membrane-associated PH domain was probed using solid-state (13)C NMR spectroscopy. Twenty per cent phosphatidylserine (PS) in the membrane caused a moderate but significant reduction of the membrane binding affinity of the PH domain despite the predicted electrostatic attraction between the PH domain and the head groups of PS. Solid-state NMR spectra of the PH domain bound to the phosphatidylcholine (PC)/PS/phosphatidylinositol 4,5-bisphosphate (PIP(2)) (75 : 20 : 5) vesicle indicated loss of the interaction between the amphipathic alpha2-helix of the PH domain and the interface region of the membrane which was previously reported for the PH domain bound to PC/PIP(2) (95 : 5) vesicles. Characteristic local conformations in the vicinity of Ala88 and Ala112 induced by the hydrophobic interaction between the alpha2-helix and the membrane interface were lost in the structure of the PH domain at the surface of the PC/PS/PIP(2) vesicle, and consequently the structure becomes identical to the solution structure of the PH domain bound to d-myo-inositol 1,4,5-trisphosphate. These local structural changes reduce the membrane binding affinity of the PH domain. The effects of PS on the PH domain were reversed by NaCl and MgCl(2), suggesting that the effects are caused by electrostatic interaction between the protein and PS. These results generally suggest that the structure and function relationships among PLCs and other peripheral membrane proteins that have similar PH domains would be affected by the local lipid composition of membranes.  相似文献   

18.
Experiments directed to measure the interaction of lysozyme with liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) have been conducted by monitoring both protein and lipid fluorescence and fluorescence anisotropy of the protein. The binding of lysozyme to the unilamellar vesicles was quantified using a novel method of analysis in which the fractional contribution at moderate binding conditions is determined from either total fluorescence decay or anisotropy decay curves of tryptophan at limiting binding conditions. In the energy transfer experiments PC and PS lipids labelled with two pyrene acyl chains served as energy acceptors of the excited tryptophan residues in lysozyme. The binding was strongly dependent on the molar fraction of negatively charged PS in neutral PC membranes and on the ionic strength. Changes in the tryptophan fluorescence decay characteristics were found to be connected with long correlation times, indicating conformational rearrangements induced by binding of the protein to these lipid membranes. The dynamics of membrane bound protein appeared to be dependent on the physical state of the membrane. Independent of protein fluorescence studies, formation of a protein-membrane complex can also be observed from the lipid properties of the system. The interaction of lysozyme with di-pyrenyl-labelled phosphatidylserine in anionic PS/PC membranes resulted in a substantial decrease of the intramolecular excimer formation, while the excimer formation of dipyrenyl-labelled phosphatidylcholine in neutral PC membranes barely changed in the presence of lysozyme.Abbreviations dipyr4 sn-1,2-(pyrenylbutyl) - dipyr10 sn-1,2-(pyrenyldecanoyl). - DMPC dimyristoyl-phosphatidylcholine - DOPC dioleoyl-phosphatidylcholine - DPPC dipalmitoyl-phosphatidylcholine - DPPC dipalmitoylphosphatidylcholine - PC phosphatidylcholine - PS phosphatidylserine Correspondence to: A. J. W. G. Visser  相似文献   

19.
Protein S is an anticoagulant protein containing a Gla (enclosing gamma-carboxyglutamic acids) module, a TSR (thrombin sensitive region) module, four EGF (epidermal growth factor)-like modules, and a SHBG (sex hormone binding globulin)-like region. Protein S is a cofactor to activated protein C (APC) in the degradation of coagulation factors Va and VIIIa but also has APC-independent activities. The function of the fourth EGF module (EGF4) in protein S has so far not been clear. We have now investigated this module through studies of recombinant wild-type protein S and a naturally occurring mutant (Asn217Ser). The mutant has essentially normal APC anticoagulant activity and a previously reported secretion defect. In the wild-type protein, Asn217 is normally beta-hydroxylated. The binding of calcium to wild-type protein S is characterized by four high-affinity binding sites with K(D) values ranging from 10(-)(7) to 10(-)(9) M. Three of these binding sites are located in EGF modules. Using surface plasmon resonance, competition with a calcium chelator, and antibody-based methods, we found that one high-affinity binding site for calcium was lost in protein S Asn217Ser but that the mutation also affected the calcium-dependent conformation of EGF1. We conclude that binding of calcium to EGF4 of protein S, involving Asn217, is important for the maintenance of the structure of protein S. Also, the abolition of binding of calcium to EGF4, related to Asn217, impairs both the structure and function of EGF1.  相似文献   

20.
The larger subunit of blood coagulation factor Va was covalently labeled with iodoacetamido derivatives of fluorescein and rhodamine without loss of functional activity, as measured by either the one-stage clotting assay or the ability to accelerate prothrombin activation in a purified system. The spectral properties of the dyes were not altered by the presence or absence of the smaller subunit of factor Va, Ca2+, prothrombin, factor Xa, or phosphatidylcholine/phosphatidylserine (PC/PS, 4:1) vesicles. When fluorescein-labeled protein (factor VaF) was titrated with PC/PS vesicles containing either octadecylrhodamine or 5-(N-hexadecanoylamino)eosin, fluorescence energy transfer was observed between the protein-bound donor dyes and the acceptor dyes at the outer surface of the phospholipid bilayer. The extent of energy transfer correlated directly with the extent of protein binding to the vesicles monitored by light scattering. The distance of closest approach between the fluorescein on factor Va and the bilayer surface averaged 90 A for the two different acceptors. Association of factor VaF with factor Xa on the phospholipid surface reduced this separation by 7 A, but association with prothrombin did not alter the distance between the labeled domain on factor VaF and the surface. The efficiency of diffusion-enhanced energy transfer between rhodamine-labeled factor Va and terbium dipicolinate entrapped inside PC/PS vesicles was less than 0.01, consistent with the location of the dye far above the inner surface of the vesicle. Thus, a domain of membrane-bound factor Va is located a minimum of 90 A above the phospholipid surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号