首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the interaction of acetylcholinesterase (AChE) inhibitors with acetyl-L-carnitine (ALCAR) transporter at the blood-brain barrier (BBB). ALCAR uptake by conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB cells), as an in vitro model of BBB, were characterized by cellular uptake study using [(3)H]ALCAR. In vivo brain uptake of [(3)H]ALCAR was determined by brain uptake index after carotid artery injection in rats. In results, the transport properties for [(3)H]ALCAR by TR-BBB cell were consistent with those of ALCAR transport by the organic cation/carnitine transporter 2 (OCTN2). Also, OCTN2 was confirmed to be expressed in the cells. The uptake of [(3)H]ALCAR by TR-BBB cells was inhibited by AChE inhibitors such as donepezil, tacrine, galantamine and rivastigmine, which IC(50) values are 45.3, 74.0, 459 and 800 μM, respectively. Especially, donepezil and galantamine inhibited the uptake of [(3)H]ALCAR competitively, but tacrine and rivastigmine inhibited noncompetitively. Furthermore, [(3)H]ALCAR uptake by the rat brain was found to be significantly decreased by quinidine, donepezil and galantamine. Our results suggest that transport of AChE inhibitors such as donepezil and galantamine through the BBB is at least partly mediated by OCTN2 which is involved in transport of ALCAR.  相似文献   

2.
3.
Although the cerebral accumulation of guanidinoacetate (GAA) contributes to neurological complications in S -adenosylmethionine:guanidinoacetate N -methyltransferase (GAMT) deficiency, how GAA is abnormally distributed in the brain remains unknown. The purpose of this study was to investigate the transport of GAA across the blood–brain barrier (BBB) and in brain parenchymal cells in rats. [14C]GAA microinjected into the rat cerebrum was not eliminated from the brain, implying the negligible contribution of GAA efflux transport across the BBB. In contrast, in vivo analysis and an uptake study by TR-BBB cells, a rat in vitro BBB model, revealed that GAA was transported from the circulating blood across the BBB most likely via a creatine transporter (CRT). Although CRT at the BBB is almost saturated by endogenous creatine under physiological conditions, the creatine level in the blood significantly decreases in GAMT deficiency. This might lead to the increase of CRT-mediated blood-to-brain transport of GAA at the BBB. Furthermore, [14C]GAA was taken up by brain parenchymal cells in a concentrative manner most likely via taurine transporter and CRT. These characteristics of GAA transport across the BBB and in the brain parenchymal cells could be the key factors that facilitate GAA accumulation in the brains of patients with GAMT deficiency.  相似文献   

4.
Nicotine is the most potent neural pharmacological alkaloid in tobacco, and the modulation of nicotine concentration in the brain is important for smoking cessation therapy. The purpose of this study was to elucidate the net flux of nicotine transport across the blood–brain barrier (BBB) and the major contributor to nicotine transport in the BBB. The in vivo brain-to-blood clearance was determined by a combination of the rat brain efflux index method and a rat brain slice uptake study, and the blood-to-brain transport of nicotine was evaluated by in vivo vascular injection in rats and a conditionally immortalized rat brain capillary endothelial cell line (TR-BBB13 cells) as an in vitro model of the rat BBB. The blood-to-brain nicotine influx clearance was obtained by integration plot analysis as 272 μL/(min g brain), and this value was twofold greater than the brain-to-blood efflux clearance (137 μL/(min g brain)). Thus, it is suggested that the net flux of nicotine transport across the BBB is dominated by blood-to-brain influx transport. In vivo blood-to-brain nicotine transport was inhibited by pyrilamine. [3H]Nicotine uptake by TR-BBB13 cells exhibited time-, temperature-, and concentration-dependence with a Km value of 92 μM. Pyrilamine competitively inhibited nicotine uptake by TR-BBB13 cells with a Ki value of 15 μM, whereas substrates and inhibitors of organic cation transporters had little effect. These results suggest that pyrilamine-sensitive organic cation transport process(es) mediate blood-to-brain influx transport of nicotine at the BBB, and this is expected to play an important role in regulating nicotine-induced neural responses.  相似文献   

5.
Although tight-junctions (TJs) at the blood-brain barrier (BBB) are important to prevent non-specific entry of compounds into the CNS, molecular mechanisms regulating TJ maintenance remain still unclear. The purpose of this study was therefore to identify molecules, which regulate occludin expression, derived from astrocytes and pericytes that ensheathe brain microvessels by using conditionally immortalized adult rat brain capillary endothelial (TR-BBB13), type II astrocyte (TR-AST4) and brain pericyte (TR-PCT1) cell lines. Transfilter co-culture with TR-AST4 cells, and exposure to conditioned medium of TR-AST4 cells (AST-CM) or TR-PCT1 cells (PCT-CM) increased occludin mRNA in TR-BBB13 cells. PCT-CM-induced occludin up-regulation was significantly inhibited by an angiopoietin-1-neutralizing antibody, whereas the up-regulation by AST-CM was not. Immunoprecipitation and western blot analyses confirmed that multimeric angiopoietin-1 is secreted from TR-PCT1 cells, and induces occludin mRNA, acting through tyrosine phosphorylation of Tie-2 in TR-BBB13 cells. A fractionated AST-CM study revealed that factors in the molecular weight range of 30-100 kDa led to occludin induction. Conversely, occludin mRNA was reduced by transforming growth factor beta 1, the mRNA of which was up-regulated in TR-AST4 cells following hypoxic treatment. In conclusion, in vitro BBB model studies revealed that the pericyte-derived multimeric angiopoietin-1/Tie-2 pathway induces occludin expression.  相似文献   

6.
ATP-binding cassette transporter A1 (ABCA1) mediates apolipoprotein-dependent cholesterol release from cellular membranes. Recent studies using ABCA1 knockout mice have demonstrated that ABCA1 affects amyloid-beta peptide (A beta) levels in the brain and the production of senile plaque. Cerebral A beta(1-40) was eliminated from the brain to the circulating blood via the blood-brain barrier (BBB), which expresses ABCA1. Therefore, in the present study, we examined whether ABCA1 affects the brain-to-blood efflux transport of human A beta(1-40)(hA beta(1-40)) at the BBB. The apparent uptake of [125I]hA beta(1-40) into ABCA1-expressing HEK293 cells was not significantly different from that into parental HEK293 cells. In addition, the apparent uptake was not significantly affected even in the presence of apolipoprotein A-I as a cholesterol release acceptor. Moreover, [125I]hA beta(1-40) elimination from mouse brain across the BBB was not significantly different between ABCA1-deficient and wild-type mice 60 min after its administration into the cerebrum. These results suggest that ABCA1 does not directly transport hA beta(1-40) and a deficiency of ABCA1 does not attenuate the brain-to-blood efflux transport of hA beta(1-40) across the BBB.  相似文献   

7.
We have investigated the transport characteristics of dehydroepiandrosterone sulfate (DHEAS), a neuroactive steroid, at the blood-brain barrier (BBB) in a series of functional in vivo and in vitro studies. The apparent BBB efflux rate constant of [(3)H]DHEAS evaluated by the brain efflux index method was 2.68 x 10(-2) min(-1). DHEAS efflux transport was a saturable process with a Michaelis constant (K:(m)) of 32.6 microM: Significant amounts of [(3)H]DHEAS were determined in the jugular venous plasma by HPLC, providing direct evidence that most of the DHEAS is transported in intact form from brain to the circulating blood across the BBB. This efflux transport of [(3)H]DHEAS was significantly inhibited by common rat organic anion-transporting polypeptide (oatp) substrates such as taurocholate, cholate, sulfobromophthalein, and estrone-3-sulfate. Moreover, the apparent efflux clearance of [(3)H]DHEAS across the BBB (118 microl/min-g of brain) was 10.4-fold greater than its influx clearance estimated by the in situ brain perfusion technique (11.4 microl/min-g of brain), suggesting that DHEAS is predominantly transported from the brain to blood across the BBB. In cellular uptake studies using a conditionally immortalized mouse brain capillary endothelial cell line (TM-BBB4), [(3)H]DHEAS uptake by TM-BBB4 cells exhibited a concentration dependence with a K:(m) of 34.4 microM: and was significantly inhibited by the oatp2-specific substrate digoxin. Conversely, [(3)H]digoxin uptake by TM-BBB4 cells was significantly inhibited by DHEAS. Moreover, the net uptake of [(3)H]DHEAS at 30 min was significantly increased under ATP-depleted conditions, suggesting that an energy-dependent efflux process may also be involved in TM-BBB4. RT-PCR and sequence analysis suggest that an oatp2 is expressed in TM-BBB4 cells. In conclusion, DHEAS efflux transport takes place across the BBB, and studies involving in vitro DHEAS uptake and RT-PCR suggest that there is oatp2-mediated DHEAS transport at the BBB.  相似文献   

8.
The blood–brain barrier (BBB) restricts the entry of proteins as well as potential drugs to cerebral tissues. We previously reported that a family of Kunitz domain-derived peptides called Angiopeps can be used as a drug delivery system for the brain. Here, we further characterize the transcytosis ability of these peptides using an in vitro model of the BBB and in situ brain perfusion. These peptides, and in particular Angiopep-2, exhibited higher transcytosis capacity and parenchymal accumulation than do transferrin, lactoferrin, and avidin. Angiopep-2 transport and accumulation in brain endothelial cells were unaffected by the P-glycoprotein inhibitor, cyclosporin A, indicating that this peptide is not a substrate for the efflux pump P-glycoprotein. However, competition studies show that activated α2-macroglobulin, a specific ligand for the low-density lipoprotein receptor-related protein-1 (LRP1) and Angiopep-2 can share the same receptor. In addition, LRP1 was detected in glioblastomas and brain metastases from lung and skin cancers. Fluorescent microscopy also revealed that Alexa488-Angiopep-2 co-localized with LRP1 in brain endothelial cell monolayers. Overall, these results suggest that Angiopep-2 transport across the BBB is, in part, mediated by LRP1.  相似文献   

9.
Aspartic acid (Asp) undergoes l-isomer-selective efflux transport across the blood-brain barrier (BBB). This transport system appears to play an important role in regulating l- and d-Asp levels in the brain. The purpose of this study was to identify the responsible transporters and elucidate the mechanism for l-isomer-selective Asp transport at the BBB. The l-isomer-selective uptake of Asp by conditionally immortalized mouse brain capillary endothelial cells used as an in vitro model of the BBB took place in an Na+- and pH-dependent manner. This process was inhibited by system ASC substrates such as l-alanine and l-serine, suggesting that system ASC transporters, ASCT1 and ASCT2, are involved in the l-isomer selective transport. Indeed, l-Asp uptake by oocytes injected with either ASCT1 or ASCT2 cRNA took place in a similar manner to that in cultured BBB cells, whereas no significant d-Asp uptake occurred. Although both ASCT1 and ASCT2 mRNA were expressed in the cultured BBB cells, the expression of ASCT2 mRNA was 6.7-fold greater than that of ASCT1. Moreover, immunohistochemical analysis suggests that ASCT2 is localized at the abluminal side of the mouse BBB. These results suggest that ASCT2 plays a key role in l-isomer-selective Asp efflux transport at the BBB.  相似文献   

10.
Immunotherapies are a promising strategy for the treatment of neurological diseases such as Alzheimer's disease (AD), however, transport of antibodies to the brain is severely restricted by the blood–brain barrier (BBB). Furthermore, molecular transport at the BBB is altered in disease, which may affect the mechanism and quantity of therapeutic antibody transport. To better understand the transport of immunotherapies at the BBB in disease, an in vitro BBB model derived from human induced pluripotent stem cells (iPSCs) was used to investigate the endocytic uptake route of immunoglobulin G (IgG). In this model, uptake of fluorescently labeled IgGs is a saturable process. Inhibition of clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis demonstrated that macropinocytosis is a major transport route for IgGs at the BBB. IgG uptake and transport were increased after the addition of stimuli to mimic AD (Aβ1–40 and Aβ1–42) and neuroinflammation (tumor necrosis factor-α and interleukin-6). Lastly, caveolar endocytosis increased in the AD model, which may be responsible for the increase in IgG uptake in disease. This study presents an iPSC-derived BBB model that responds to disease stimuli with physiologically relevant changes to molecular transport and can be used to understand fundamental questions about transport mechanisms of immunotherapies in health and neurodegenerative disease.  相似文献   

11.
The purpose of the present study was to clarify the expression, transport properties and regulation of ATP-binding cassette G2 (ABCG2) transporter at the rat blood-brain barrier (BBB). The rat homologue of ABCG2 (rABCG2) was cloned from rat brain capillary fraction. In rABCG2-transfected HEK293 cells, rABCG2 was detected as a glycoprotein complex bridged by disulfide bonds, possibly a homodimer. The protein transported mitoxantrone and BODIPY-prazosin. In rat brain capillary fraction, rABCG2 protein was also detected as a glycosylated and disulfide-linked complex. Immunohistochemical analysis revealed that rABCG2 was localized mainly on the luminal side of rat brain capillaries, suggesting that rABCG2 is involved in brain-to-blood efflux transport. For the regulation study, conditionally immortalized rat brain capillary endothelial (TR-BBB13), astrocyte (TR-AST4) and pericyte (TR-PCT1) cell lines were used as an in vitro BBB model. Following treatment of TR-BBB13 cells with conditioned medium of TR-AST4 cells, the Ko143 (an ABCG2-specific inhibitor)-sensitive transport activity and rABCG2 mRNA level were significantly increased, whereas conditioned medium of TR-PCT1 cells had no effect. These results suggest that rat brain capillaries express functional rABCG2 protein and that the transport activity of the protein is up-regulated by astrocyte-derived soluble factor(s) concomitantly with the induction of rABCG2 mRNA.  相似文献   

12.
Brain and retinal capillary endothelial cells (BCECs and RCECs, respectively) exhibit a barrier structure and function. Comparison of gene expression in these cells could clarify the selective function of each barrier. The purpose of this study was to identify the genes selectively expressed at the blood-brain barrier (BBB) and to clarify the function of the selective gene, androgen receptor (AR). Gene expression was compared by a differential display using conditionally immortalized rat BCECs and RCECs (TR-BBB and TR-iBRB, respectively). A total of 12 gene fragments were identified as the selective genes dominantly expressed in TR-BBB cells. The most selective fragment in TR-BBB cells had the highest homology with the 3'-UTR of human and mouse AR. Rat AR mRNA was detected in TR-BBB cells and the brain capillary rich fraction, but not in TR-iBRB cells. Expression of organic anion transporter 3 (OAT3) mRNA in TR-BBB cells was induced by treatment with dihydrotestosterone (DHT), an AR ligand, and this induction was suppressed by flutamide. Moreover, uptake of benzylpenicillin by TR-BBB cells was also induced by DHT treatment. In contrast, OAT3 mRNA expression in TR-iBRB cells was not affected by DHT treatment. The brain-to-blood efflux rate of benzylpenicillin was not affected by gender. These results suggest that AR is involved in the functional regulation of OAT3 at the BBB, but not at the inner blood-retinal barrier (iBRB), and this regulation is not affected by gender. The BBB function will be affected by the androgen levels in the brain and/or plasma via AR.  相似文献   

13.
D-Serine is a co-agonist for NMDA-type glutamate receptors. Although D-serine levels in CSF and interstitial fluid (ISF) affect CNS function, the regulatory system remains to be fully understood. Therefore, the purpose of this study was to investigate d-serine transport across the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) and in brain parenchymal cells. D-Serine microinjected into the cerebrum was not eliminated, suggesting a negligible contribution of D-serine efflux transport at the BBB. In contrast, D-serine was taken up from the circulating blood across the BBB via a carrier-mediated process. D-Serine elimination clearance from CSF was fourfold greater than that of d-mannitol, which is considered to reflect CSF bulk flow. The characteristics of D-serine uptake by isolated choroid plexus were consistent with those of Na(+)-independent alanine-serine-cysteine transporter 1 (asc-1). Uptake of D-serine by brain slices appeared to occur predominantly via asc-1 and Na(+)-dependent alanine-serine-cysteine transporter 2. These findings suggest that the regulatory system of D-serine levels in ISF and CSF involves (i) asc-1 at the BCSFB, acting as a major pathway of D-serine elimination from the CSF, (ii) blood-to-brain and blood-to-CSF influx transport of D-serine across the BBB and BCSFB, and (iii) concentrative uptake of D-serine by brain parenchymal cells.  相似文献   

14.
New and effective therapeutics that cross the blood‐brain barrier (BBB) are critically needed for treatment of many brain diseases. We characterize here a novel drug development platform that is broadly applicable for the development of new therapeutics with increased brain penetration. The platform is based on the Angiopep‐2 peptide, a sequence derived from ligands that bind to low‐density lipoprotein receptor‐related protein‐1 (LRP‐1), a receptor expressed on the BBB. Fluorescent imaging studies of a Cy5.5Angiopep‐2 conjugate and immunohistochemical studies of injected Angiopep‐2 in mice demonstrated efficient transport across the BBB into brain parenchyma and subsequent co‐localization with the neuronal nuclei‐selective marker NeuN and the glial marker glial fibrillary acidic protein (GFAP). Uptake of [125I]‐Angiopep‐2 into brain endothelial cells occurred by a saturable mechanism involving LRP‐1. The primary sequence and charge of Angiopep‐2 were crucial for its passage across the BBB. Overall, the results demonstrate the significant potential of this platform for the development of novel neurotherapeutics.  相似文献   

15.
Poor Mg status is a risk factor for Alzheimer’s disease (AD), and the underlying mechanisms remain elusive. Here, we provided the first evidence that elevated Mg levels significantly reduced the blood-brain barrier (BBB) permeability and regulated its function in vitro. Transient receptor potential melastatin 7 (TRPM7) and magnesium transporter subtype 1 (MagT1) were two major cellular receptors mediating entry of extracellular Mg2+ into the cells. Elevated Mg levels also induced an accelerated clearance of amyloid-β peptide (Aβ) from the brain to the blood side via BBB transcytosis through low-density lipoprotein receptor-related protein (LRP) and phosphatidylinositol binding clathrin assembly protein (PICALM), while reduced the influx of Aβ from the blood to the brain side involving receptor for advanced glycation end products (RAGE) and caveolae. Mg enhanced BBB barrier properties and overall expression of LRP1 and PICALM whereas reduced that of RAGE and caveolin-1. Apical-to-basolateral and vice versa steady-state Aβ flux achieved an equilibrium of 18 and 0.27 fmol/min/cm2, respectively, about 30 min after the initial addition of physiological levels of free Aβ. Knockdown of caveolin-1 or disruption of caveolae membrane microdomains reduced RAGE-mediated influx significantly, but not LRP1-mediated efflux of Aβ. Stimulating endothelial cells with vascular endothelial growth factor (VEGF) enhanced caveolin-1 phosphorylation and RAGE expression. Co-immunoprecipitation demonstrated that RAGE, but not LRP1, was physically associated with caveolin-1. Thus, Mg can reduce BBB permeability and promote BBB clearance of Aβ from the brain by increasing the expression of LRP1 and PICALM while reducing the level of RAGE and caveolin-1.  相似文献   

16.
LRP (low-density lipoprotein receptor-related protein) is linked to Alzheimer's disease (AD). Here, we report amyloid beta-peptide Abeta40 binds to immobilized LRP clusters II and IV with high affinity (Kd = 0.6-1.2 nM) compared to Abeta42 and mutant Abeta, and LRP-mediated Abeta brain capillary binding, endocytosis, and transcytosis across the mouse blood-brain barrier are substantially reduced by the high beta sheet content in Abeta and deletion of the receptor-associated protein gene. Despite low Abeta production in the brain, transgenic mice expressing low LRP-clearance mutant Abeta develop robust Abeta cerebral accumulations much earlier than Tg-2576 Abeta-overproducing mice. While Abeta does not affect LRP internalization and synthesis, it promotes proteasome-dependent LRP degradation in endothelium at concentrations > 1 microM, consistent with reduced brain capillary LRP levels in Abeta-accumulating transgenic mice, AD, and patients with cerebrovascular beta-amyloidosis. Thus, low-affinity LRP/Abeta interaction and/or Abeta-induced LRP loss at the BBB mediate brain accumulation of neurotoxic Abeta.  相似文献   

17.
Senile amyloid plaques are one of the diagnostic hallmarks of Alzheimer's disease (AD). However, the severity of clinical symptoms of AD is weakly correlated with the plaque load. AD symptoms severity is reported to be more strongly correlated with the level of soluble amyloid-β (Aβ) assemblies. Formation of soluble Aβ assemblies is stimulated by monomeric Aβ accumulation in the brain, which has been related to its faulty cerebral clearance. Studies tend to focus on the neurotoxicity of specific Aβ species. There are relatively few studies investigating toxic effects of Aβ on the endothelial cells of the blood–brain barrier (BBB). We hypothesized that a soluble Aβ pool more closely resembling the in vivo situation composed of a mixture of Aβ40 monomer and Aβ42 oligomer would exert higher toxicity against hCMEC/D3 cells as an in vitro BBB model than either component alone. We observed that, in addition to a disruptive effect on the endothelial cells integrity due to enhancement of the paracellular permeability of the hCMEC/D3 monolayer, the Aβ mixture significantly decreased monomeric Aβ transport across the cell culture model. Consistent with its effect on Aβ transport, Aβ mixture treatment for 24 h resulted in LRP1 down-regulation and RAGE up-regulation in hCMEC/D3 cells. The individual Aβ species separately failed to alter Aβ clearance or the cell-based BBB model integrity. Our study offers, for the first time, evidence that a mixture of soluble Aβ species, at nanomolar concentrations, disrupts endothelial cells integrity and its own transport across an in vitro model of the BBB.  相似文献   

18.
The present study aimed to investigate pathways that contribute to uptake and transcytosis of high-density lipoproteins (HDLs) and HDL-associated alpha-tocopherol (alpha TocH) across an in vitro model of the blood-brain barrier (BBB). In primary porcine brain capillary endothelial cells HDL-associated alpha TocH was taken up in 10-fold excess of HDL holoparticles, indicating efficient selective uptake, a pathway mediated by scavenger receptor class B, type I (SR-BI). SR-BI was present in caveolae of brain capillary endothelial cells and expressed almost exclusively at the apical membrane. Disruption of caveolae with methyl-beta-cyclodextrin (CDX) resulted in (mis)sorting of SR-BI to the basolateral membrane. Immunohistochemistry of porcine brain cryosections revealed SR-BI expression on brain capillary endothelial cells and presumably astrocytic endfeet. HDL-associated [(14)C]alpha TocH taken up by brain capillary endothelial cells was recovered in sucrose gradient fractions containing the majority of cellular caveolin-1, the major caveolae-associated protein. During mass transfer studies using alpha TocH-enriched HDL, approximately 50% of cellular alpha TocH was recovered with the bulk of cellular caveolin-1 and SR-BI. Efflux experiments revealed that a substantial amount of cell-associated [(14)C]alpha TocH could be mobilized into the culture medium. In addition, apical-to-basolateral transport of HDL holoparticles and HDL-associated alpha TocH was saturable. Results from the present study suggest that part of cerebral apolipoprotein A-I and alpha TocH originates from plasma HDL transcytosed across the BBB and that caveolae-located SR-BI facilitates selective uptake of HDL-associated alpha TocH at the BBB.  相似文献   

19.
Alzheimer’s disease (AD) is characterized by excessive cerebrovascular deposition of the β-amyloid peptide (Aβ). The investigation of Aβ transport across the blood-brain barrier (BBB) has been hindered by inherent limitations in the cellular systems currently used to model the BBB, such as insufficient barrier properties and poor reproducibility. In addition, many of the existing models are not of human or brain origin and are often arduous to establish and maintain. Thus, we characterized an in vitro model of the BBB employing human brain microvascular endothelial cells (HBMEC) and evaluated its utility to investigate Aβ exchange at the blood-brain interface. Our HBMEC model offers an ease of culture compared with primary isolated or coculture BBB models and is more representative of the human brain endothelium than many of the cell lines currently used to study the BBB. In our studies, the HBMEC model exhibited barrier properties comparable to existing BBB models as evidenced by the restricted permeability of a known paracellular marker. In addition, using a simple and rapid fluormetric assay, we showed that antagonism of key Aβ transport proteins significantly altered the bi-directional transcytosis of fluorescein-Aβ (1–42) across the HBMEC model. Moreover, the magnitude of these effects was consistent with reports in the literature using the same ligands in existing in vitro models of the BBB. These studies establish the HBMEC as a representative in vitro model of the BBB and offer a rapid fluorometric method of assessing Aβ exchange between the periphery and the brain.  相似文献   

20.
The aim of the present study was to investigate the expression of nuclear receptor mRNA and regulation of the expression of ATP-binding cassette (ABC) transporters by nuclear receptor agonists in rat brain capillary endothelial cells, which form the blood-brain barrier, by using rat brain capillary fraction from 8-week-old rats and a conditionally immortalized brain capillary endothelial cell line (TR-BBB13). RT-PCR analysis revealed that liver X receptor alpha and beta, retinoid X receptor alpha and beta and peroxisome proliferator-activating receptor alpha and beta mRNAs were expressed in the rat brain capillary endothelial cells and TR-BBB cells. In contrast, pregnane X receptor, farnesoid X receptor and constitutive androstane receptor were not detected. Furthermore, treatment with a liver X receptor agonist increased the ABCA1 mRNA level in TR-BBB13 cells, while ABCG2 mRNA expression was not affected. Treatment with a rat pregnane X receptor agonist did not affect the ABCB1 mRNA level in TR-BBB13 cells. These results demonstrate that the rat blood-brain barrier has an expressional regulation mechanism via sterol-related nuclear receptor, and indicate that the blood-brain barrier in 8-week-old rats lacks ABCB1 regulation via pregnane X receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号